Suppr超能文献

Salt- and angiotensin II-dependent variations in amiloride-sensitive rectal potential difference in mice.

作者信息

Wang Q, Horisberger J D, Maillard M, Brunner H R, Rossier B C, Burnier M

机构信息

Division of Hypertension and Vascular Medicine, University of Lausanne, Switzerland.

出版信息

Clin Exp Pharmacol Physiol. 2000 Jan-Feb;27(1-2):60-6. doi: 10.1046/j.1440-1681.2000.03204.x.

Abstract
  1. In the rectum and distal nephron, sodium reabsorption is mediated by the amiloride-sensitive epithelial sodium channel (ENaC). The ENaC-mediated sodium transport is electrogenic and creates an amiloride-sensitive transepithelial potential difference (PD). 2. We have evaluated the salt- and angiotensin (Ang)II-dependent variations in amiloride-sensitive rectal PD in mice and assessed their relationship with renal sodium handling. 3. Rectal PD was measured in vivo in mice maintained on a medium-, low- or high-sodium diet. On a medium-salt diet, the mean (+/- SEM) amiloride-sensitive PD was larger in the afternoon than in the morning (-26.1 +/- 0.9 and -11.2 +/- 0.7 mV, respectively; P = 0.001), indicating a circadian cyclicity. Rectal PD increased on a low-sodium diet and decreased on a high-sodium diet. 4. Amiloride-sensitive rectal PD correlated significantly with the urinary Na+/K+ ratio (P < 0.001) and with sodium reabsorption in the distal nephron as measured by the lithium clearance technique (P < 0.001). 5. In mice treated with an AngII AT1 receptor antagonist, amiloride-sensitive rectal PD was increased in the afternoon compared with controls (-32.8 +/- 2.0 vs -24.4 +/- 0.9, respectively; P < 0.001). 6. At high doses, AngII decreased the amiloride-sensitive rectal PD and this effect was blunted by an AT1 receptor antagonist. 7. These results show the presence of a salt-dependent daily cyclicity of sodium transport in the mouse rectum that follows circadian changes in sodium handling in the distal nephron. Angiotensin II appears to modulate this diurnal pattern of rectal amiloride-sensitive sodium transport.
摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验