Suppr超能文献

腹侧呼吸组中的模式形成与节律产生

Pattern formation and rhythm generation in the ventral respiratory group.

作者信息

McCrimmon D R, Monnier A, Hayashi F, Zuperku E J

机构信息

Department of Physiology, Northwestern University Medical School, Chicago, Illinois 60611-3008, USA.

出版信息

Clin Exp Pharmacol Physiol. 2000 Jan-Feb;27(1-2):126-31. doi: 10.1046/j.1440-1681.2000.03193.x.

Abstract
  1. There is increasing evidence that the kernel of the rhythm-generating circuitry for breathing is located within a discrete subregion of a column of respiratory neurons within the ventrolateral medulla referred to as the ventral respiratory group (VRG). It is less clear how this rhythm is transformed into the precise patterns appearing on the varied motor outflows. 2. Two different approaches were used to test whether subregions of the VRG have distinct roles in rhythm or pattern generation. In one, clusters of VRG neurons were activated or inactivated by pressure injection of small volumes of neuroactive agents to activate or inactivate groups of respiratory neurons and the resulting effects on respiratory rhythm and pattern were determined. The underlying assumption was that if rhythm and pattern are generated by neurons in different VRG subregions, then we should be able to identify regions where activation of neurons predominantly alters rhythm with little effect on pattern and other regions where pattern is altered with little effect on rhythm. 3. Based on the pattern of phrenic nerve responses to injection of an excitatory amino acid (DL-homocysteate), the VRG was divided into four subdivisions arranged along the rostrocaudal axis. Injections into the three rostral regions elicited changes in both respiratory rhythm and pattern. From rostral to caudal the regions included: (i) a rostral bradypnoea region, roughly associated with the Bötzinger complex; (ii) a dysrhythmia/tachypnoea area, roughly associated with the pre-Bötzinger complex (PBC); (iii) a second caudal bradypnoea area; and, most caudally, (iv) a region from which no detectable change in respiratory motor output was elicited. 4. In a second approach, the effect of unilateral lesions of one subregion, the PBC, on the Breuer-Hering reflex changes in rhythm were determined. Activation of this reflex by lung inflation shortens inspiration and lengthens expiration (TE). 5. Unilateral lesions in the PBC attenuated the reflex lengthening of TE, but did not change baseline respiratory rhythm. 6. These findings are consistent with the concept that the VRG is not functionally homogenous, but consists of rostrocaudally arranged subregions. Neurons within the so-called PBC appear to have a dominant role in rhythm generation. Nevertheless, neurons within other subregions contribute to both rhythm and pattern generation. Thus, at least at an anatomical level resolvable by pressure injection, there appears to be a significant overlap in the circuitry generating respiratory rhythm and pattern.
摘要
  1. 越来越多的证据表明,呼吸节律产生回路的核心位于延髓腹外侧一列呼吸神经元的一个离散子区域内,该区域被称为腹侧呼吸组(VRG)。目前尚不清楚这种节律是如何转化为出现在各种运动输出上的精确模式的。2. 采用了两种不同的方法来测试VRG的子区域在节律或模式产生中是否具有不同的作用。在一种方法中,通过压力注射少量神经活性剂来激活或失活VRG神经元簇,以激活或失活呼吸神经元组,并确定其对呼吸节律和模式的影响。其基本假设是,如果节律和模式是由不同VRG子区域的神经元产生的,那么我们应该能够识别出神经元激活主要改变节律而对模式影响较小的区域,以及模式改变而对节律影响较小的其他区域。3. 根据膈神经对兴奋性氨基酸(DL-高半胱氨酸)注射的反应模式,将VRG沿头尾轴分为四个亚区。向三个头侧区域注射会引起呼吸节律和模式的变化。从头部到尾部,这些区域包括:(i)一个头侧呼吸徐缓区域,大致与包钦格复合体相关;(ii)一个心律失常/呼吸急促区域,大致与前包钦格复合体(PBC)相关;(iii)第二个尾侧呼吸徐缓区域;最尾侧的是(iv)一个未引起呼吸运动输出可检测变化的区域。4. 在第二种方法中,确定了一个子区域,即PBC的单侧损伤对布雷尔-黑林反射节律变化的影响。肺充气激活该反射会缩短吸气并延长呼气(TE)。5. PBC的单侧损伤减弱了TE的反射性延长,但没有改变基线呼吸节律。6. 这些发现与VRG在功能上并非同质而是由沿头尾排列的子区域组成的概念一致。所谓PBC内的神经元似乎在节律产生中起主导作用。然而,其他子区域内的神经元对节律和模式产生都有贡献。因此,至少在通过压力注射可分辨的解剖水平上,产生呼吸节律和模式的回路似乎存在显著重叠。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验