Suppr超能文献

氧化亚铁硫杆菌中亚铁离子或硫氧化的选择性抑制

Selective inhibition of the oxidation of ferrous iron or sulfur in Thiobacillus ferrooxidans.

作者信息

Harahuc L, Lizama H M, Suzuki I

机构信息

Department of Microbiology, University of Manitoba, Winnipeg, Manitoba.

出版信息

Appl Environ Microbiol. 2000 Mar;66(3):1031-7. doi: 10.1128/AEM.66.3.1031-1037.2000.

Abstract

The oxidation of either ferrous iron or sulfur by Thiobacillus ferrooxidans was selectively inhibited or controlled by various anions, inhibitors, and osmotic pressure. Iron oxidation was more sensitive than sulfur oxidation to inhibition by chloride, phosphate, and nitrate at low concentrations (below 0.1 M) and also to inhibition by azide and cyanide. Sulfur oxidation was more sensitive than iron oxidation to the inhibitory effect of high osmotic pressure. These differences were evident not only between iron oxidation by iron-grown cells and sulfur oxidation by sulfur-grown cells but also between the iron and sulfur oxidation activities of the same iron-grown cells. Growth experiments with ferrous iron or sulfur as an oxidizable substrate confirmed the higher sensitivity of iron oxidation to inhibition by phosphate, chloride, azide, and cyanide. Sulfur oxidation was actually stimulated by 50 mM phosphate or chloride. Leaching of Fe and Zn from pyrite (FeS(2)) and sphalerite (ZnS) by T. ferrooxidans was differentially affected by phosphate and chloride, which inhibited the solubilization of Fe without significantly affecting the solubilization of Zn.

摘要

氧化亚铁硫杆菌对亚铁离子或硫的氧化作用可被各种阴离子、抑制剂和渗透压选择性抑制或控制。在低浓度(低于0.1M)时,亚铁离子氧化比硫氧化对氯化物、磷酸盐和硝酸盐的抑制更敏感,对叠氮化物和氰化物的抑制也更敏感。硫氧化比亚铁离子氧化对高渗透压的抑制作用更敏感。这些差异不仅在以铁生长的细胞进行的铁氧化和以硫生长的细胞进行的硫氧化之间明显,而且在相同的以铁生长的细胞的铁和硫氧化活性之间也很明显。以亚铁离子或硫作为可氧化底物的生长实验证实了铁氧化对磷酸盐、氯化物、叠氮化物和氰化物抑制的更高敏感性。硫氧化实际上受到50mM磷酸盐或氯化物的刺激。氧化亚铁硫杆菌对黄铁矿(FeS₂)和闪锌矿(ZnS)中Fe和Zn的浸出受到磷酸盐和氯化物的不同影响,它们抑制了Fe的溶解,而对Zn的溶解没有显著影响。

相似文献

1
Selective inhibition of the oxidation of ferrous iron or sulfur in Thiobacillus ferrooxidans.
Appl Environ Microbiol. 2000 Mar;66(3):1031-7. doi: 10.1128/AEM.66.3.1031-1037.2000.
4
Effect of anions on selective solubilization of zinc and copper in bacterial leaching of sulfide ores.
Biotechnol Bioeng. 2000 Jul 20;69(2):196-203. doi: 10.1002/(sici)1097-0290(20000720)69:2<196::aid-bit8>3.0.co;2-q.
7
Ferrous iron oxidation and rusticyanin in halotolerant, acidophilic 'Thiobacillus prosperus'.
Microbiology (Reading). 2009 Apr;155(Pt 4):1302-1309. doi: 10.1099/mic.0.023192-0.
8
Ferrous iron oxidation and uranium extraction by Thiobacillus ferrooxidans.
Biotechnol Bioeng. 1977 May;19(5):727-40. doi: 10.1002/bit.260190509.
10
Direct sulfide oxidation in the solubilization of sulfide ores by Thiobacillus ferrooxidans.
J Bacteriol. 1968 Oct;96(4):1433-4. doi: 10.1128/jb.96.4.1433-1434.1968.

引用本文的文献

1
Bioleaching of lithium from jadarite, spodumene, and lepidolite using .
Front Microbiol. 2024 Nov 13;15:1467408. doi: 10.3389/fmicb.2024.1467408. eCollection 2024.
2
Acidophilic heterotrophs: basic aspects and technological applications.
Front Microbiol. 2024 May 17;15:1374800. doi: 10.3389/fmicb.2024.1374800. eCollection 2024.
4
Glutathione Synthetase Overexpression in Acidithiobacillus ferrooxidans Improves Halotolerance of Iron Oxidation.
Appl Environ Microbiol. 2021 Sep 28;87(20):e0151821. doi: 10.1128/AEM.01518-21. Epub 2021 Aug 4.
5
Effect of Sodium Chloride on Pyrite Bioleaching and Initial Attachment by .
Front Microbiol. 2020 Sep 11;11:2102. doi: 10.3389/fmicb.2020.02102. eCollection 2020.
7
Domestication of Local Microbial Consortia for Efficient Recovery of Gold Through Top-Down Selection in Airlift Bioreactors.
Front Microbiol. 2019 Jan 30;10:60. doi: 10.3389/fmicb.2019.00060. eCollection 2019.
8
Presentation on mechanisms and applications of chalcopyrite and pyrite bioleaching in biohydrometallurgy - a presentation.
Biotechnol Rep (Amst). 2014 Sep 16;4:107-119. doi: 10.1016/j.btre.2014.09.003. eCollection 2014 Dec.
9
Multiple Osmotic Stress Responses in Result in Tolerance to Chloride Ions.
Front Microbiol. 2017 Jan 5;7:2132. doi: 10.3389/fmicb.2016.02132. eCollection 2016.
10

本文引用的文献

2
SULFATE REQUIREMENT FOR IRON OXIDATION BY THIOBACILLUS FERROOXIDANS.
J Bacteriol. 1963 Jan;85(1):78-83. doi: 10.1128/jb.85.1.78-83.1963.
4
Bacterial community in copper sulfide ores inoculated and leached with solution from a commercial-scale copper leaching plant.
Appl Environ Microbiol. 1997 Apr;63(4):1344-8. doi: 10.1128/aem.63.4.1344-1348.1997.
5
Energy Transduction by Anaerobic Ferric Iron Respiration in Thiobacillus ferrooxidans.
Appl Environ Microbiol. 1991 Jul;57(7):2063-8. doi: 10.1128/aem.57.7.2063-2068.1991.
8
ISOLATION AND PROPERTIES OF AN IRON-OXIDIZING THIOBACILLUS.
J Bacteriol. 1963 Mar;85(3):595-603. doi: 10.1128/jb.85.3.595-603.1963.
9
Effect of various ions, pH, and osmotic pressure on oxidation of elemental sulfur by Thiobacillus thiooxidans.
Appl Environ Microbiol. 1999 Nov;65(11):5163-8. doi: 10.1128/AEM.65.11.5163-5168.1999.
10
Sulfur-binding protein of flagella of Thiobacillus ferrooxidans.
J Bacteriol. 1996 Oct;178(19):5776-80. doi: 10.1128/jb.178.19.5776-5780.1996.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验