Suppr超能文献

使用……从透锂长石、锂辉石和锂云母中生物浸出锂

Bioleaching of lithium from jadarite, spodumene, and lepidolite using .

作者信息

Kirk Rebecca D, Newsome Laura, Falagan Carmen, Hudson-Edwards Karen A

机构信息

Environment and Sustainability Institute and Camborne School of Mines University of Exeter, Cornwall, United Kingdom.

School of Environment and Life Sciences, University of Portsmouth, Portsmouth, United Kingdom.

出版信息

Front Microbiol. 2024 Nov 13;15:1467408. doi: 10.3389/fmicb.2024.1467408. eCollection 2024.

Abstract

Lithium (Li) is becoming increasingly important due to its use in clean technologies that are required for the transition to net zero. Although acidophilic bioleaching has been used to recover metals from a wide range of deposits, its potential to recover Li has not yet been fully explored. In this study, we used a model Fe(II)- and S-oxidising bacterium, (At. Ferrooxidans), to extract Li from three different minerals and kinetic modelling to predict the dominant reaction pathways for Li release. Bioleaching of Li from the aluminosilicate minerals lepidolite (K(Li,Al)(Al,Si,Rb)O(F,OH)) and spodumene (LiAl(SiO)) was slow, with only up to 14% (approximately 12 mg/L) of Li released over 30 days. By contrast, accelerated Li leaching from a Li-bearing borosilicate clay (jadarite, LiNaBSiOOH) by over 50% (over 120 mg/L) in 21 days of leaching, and consistently enhanced Li release throughout the experiment compared to the uninoculated control. Biofilm formation and flocculation of sediment occurred exclusively in the experiments with and jadarite. Fe(II) present in the jadarite-bearing clay acted as an electron donor. Chemical leaching of Li from jadarite using H2SO4 was most effective, releasing approximately 75% (180 mg/L) of Li, but required more acid than bioleaching for pH control. Kinetic modelling was unable to replicate the data for jadarite bioleaching after primary abiotic leaching stages, suggesting additional processes beyond chemical leaching were responsible for the release of Li. A new crystalline phase, tentatively identified as boric acid, was observed to form after acid leaching of jadarite. Overall, the results demonstrate the potential for acidophilic bioleaching to recover Li from jadarite, with relevance for other Li-bearing deposits.

摘要

锂(Li)因其在向净零排放过渡所需的清洁技术中的应用而变得越来越重要。尽管嗜酸生物浸出已被用于从各种矿床中回收金属,但其回收锂的潜力尚未得到充分探索。在本研究中,我们使用一种典型的铁(II)和硫氧化细菌,氧化亚铁硫杆菌,从三种不同矿物中提取锂,并通过动力学建模预测锂释放的主要反应途径。从锂云母(K(Li,Al)(Al,Si,Rb)O(F,OH))和锂辉石(LiAl(SiO))等铝硅酸盐矿物中生物浸出锂的速度较慢,在30天内锂的释放量最高仅达14%(约12毫克/升)。相比之下,在21天的浸出过程中,氧化亚铁硫杆菌使含锂硼硅酸盐粘土(贾达尔石,LiNaBSiOOH)的锂浸出加速超过50%(超过120毫克/升),并且与未接种对照相比,在整个实验过程中持续提高了锂的释放量。生物膜形成和沉积物絮凝仅发生在使用氧化亚铁硫杆菌和贾达尔石的实验中。含贾达尔石的粘土中存在的铁(II)充当电子供体。使用硫酸从贾达尔石中化学浸出锂最为有效,释放了约75%(180毫克/升)的锂,但为控制pH值所需的酸比生物浸出更多。动力学建模无法复制初级非生物浸出阶段后贾达尔石生物浸出的数据,这表明除化学浸出外的其他过程导致了锂的释放。在对贾达尔石进行酸浸后,观察到一种新的结晶相,初步鉴定为硼酸。总体而言,结果表明嗜酸生物浸出从贾达尔石中回收锂的潜力,这与其他含锂矿床相关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fcd0/11622194/f00df8c7e2b8/fmicb-15-1467408-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验