Suppr超能文献

通过单分子显微镜观察到的肌肉细胞膜中脂质微区的特性。

Properties of lipid microdomains in a muscle cell membrane visualized by single molecule microscopy.

作者信息

Schütz G J, Kada G, Pastushenko V P, Schindler H

机构信息

Institute for Biophysics, University of Linz, A-4040 Linz, Austria.

出版信息

EMBO J. 2000 Mar 1;19(5):892-901. doi: 10.1093/emboj/19.5.892.

Abstract

The lateral motion of single fluorescence labeled lipid molecules was imaged in native cell membranes on a millisecond time scale and with positional accuracy of approximately 50 nm, using 'single dye tracing'. This first application of single molecule microscopy to living cells rendered possible the direct observation of lipid-specific membrane domains. These domains were sensed by a lipid probe with saturated acyl chains as small areas in a liquid-ordered phase: the probe showed confined but fast diffusion, with high partitioning (approximately 100-fold) and long residence time (approximately 13 s). The analogous probe with mono-unsaturated chains diffused predominantly unconfined within the membrane. With approximately 15 saturated probes per domain, the locations, sizes, shapes and motions of individual domains became clearly visible. Domains had a size of 0.7 micrometer (0.2-2 micrometer), covering approximately 13% of total membrane area. Both the liquid-ordered phase characteristics and the sizes of domains match properties of membrane fractions described as detergent-resistant membranes (DRMs), strongly suggesting that the domains seen are the in vivo correlate of DRMs and thus may be identified as lipid rafts.

摘要

利用“单染料追踪”技术,在毫秒时间尺度上对天然细胞膜中单个荧光标记脂质分子的横向运动进行成像,位置精度约为50纳米。单分子显微镜在活细胞中的首次应用使得直接观察脂质特异性膜结构域成为可能。这些结构域被具有饱和酰基链的脂质探针感知为液相有序相中的小区域:该探针显示出受限但快速的扩散,具有高分配率(约100倍)和长停留时间(约13秒)。具有单不饱和链的类似探针在膜内主要进行非受限扩散。每个结构域约有15个饱和探针,各个结构域的位置、大小、形状和运动变得清晰可见。结构域大小为0.7微米(0.2 - 2微米),覆盖约13%的总膜面积。液相有序相特征和结构域大小均与被描述为抗去污剂膜(DRMs)的膜组分特性相符,强烈表明所观察到的结构域是DRMs在体内的对应物,因此可能被鉴定为脂筏。

相似文献

2
Visualizing lipid structure and raft domains in living cells with two-photon microscopy.
Proc Natl Acad Sci U S A. 2003 Dec 23;100(26):15554-9. doi: 10.1073/pnas.2534386100. Epub 2003 Dec 12.
3
Structure of detergent-resistant membrane domains: does phase separation occur in biological membranes?
Biochem Biophys Res Commun. 1997 Nov 7;240(1):1-7. doi: 10.1006/bbrc.1997.7575.
8
In situ imaging of detergent-resistant membranes by atomic force microscopy.
J Struct Biol. 2000 Jul;131(1):38-43. doi: 10.1006/jsbi.2000.4266.
9
Applications of fluorescence lifetime spectroscopy and imaging to lipid domains in vivo.
Methods Enzymol. 2012;504:57-81. doi: 10.1016/B978-0-12-391857-4.00003-3.
10
Quantitative microscopy: protein dynamics and membrane organisation.
Traffic. 2009 Aug;10(8):962-71. doi: 10.1111/j.1600-0854.2009.00908.x. Epub 2009 Apr 4.

引用本文的文献

1
Mapping membrane biophysical nano-environments.
Nat Commun. 2024 Nov 7;15(1):9641. doi: 10.1038/s41467-024-53883-1.
2
3
The life of the cell membrane: A paradigmatic reading from Deleuze and Guattari.
Heliyon. 2023 Nov 10;9(11):e21924. doi: 10.1016/j.heliyon.2023.e21924. eCollection 2023 Nov.
4
Cellular Lipids-Hijacked Victims of Viruses.
Viruses. 2022 Aug 27;14(9):1896. doi: 10.3390/v14091896.
5
Efficient calculation of the free energy for protein partitioning using restraining potentials.
Biophys J. 2023 Jun 6;122(11):1914-1925. doi: 10.1016/j.bpj.2022.07.031. Epub 2022 Aug 12.
7
Mitochondrial Lipid Signaling and Adaptive Thermogenesis.
Metabolites. 2021 Feb 22;11(2):124. doi: 10.3390/metabo11020124.
8
Look at Tempered Subdiffusion in a Conjugate Map: Desire for the Confinement.
Entropy (Basel). 2020 Nov 18;22(11):1317. doi: 10.3390/e22111317.
9
Revealing Plasma Membrane Nano-Domains with Diffusion Analysis Methods.
Membranes (Basel). 2020 Oct 29;10(11):314. doi: 10.3390/membranes10110314.
10
The Decade of Super-Resolution Microscopy of the Presynapse.
Front Synaptic Neurosci. 2020 Aug 11;12:32. doi: 10.3389/fnsyn.2020.00032. eCollection 2020.

本文引用的文献

1
Looking at lipid rafts?
Trends Cell Biol. 1999 Mar;9(3):87-91. doi: 10.1016/s0962-8924(98)01495-0.
2
Microscopy for recognition of individual biomolecules.
Microsc Res Tech. 1999 Mar 1;44(5):339-46. doi: 10.1002/(SICI)1097-0029(19990301)44:5<339::AID-JEMT4>3.0.CO;2-6.
3
Fluorescence spectroscopy of single biomolecules.
Science. 1999 Mar 12;283(5408):1676-83. doi: 10.1126/science.283.5408.1676.
4
Single-molecule enzymatic dynamics.
Science. 1998 Dec 4;282(5395):1877-82. doi: 10.1126/science.282.5395.1877.
6
The caveolae membrane system.
Annu Rev Biochem. 1998;67:199-225. doi: 10.1146/annurev.biochem.67.1.199.
7
Microdomains of GPI-anchored proteins in living cells revealed by crosslinking.
Nature. 1998 Aug 20;394(6695):802-5. doi: 10.1038/29570.
8
GPI-anchored proteins are organized in submicron domains at the cell surface.
Nature. 1998 Aug 20;394(6695):798-801. doi: 10.1038/29563.
9
Structure and origin of ordered lipid domains in biological membranes.
J Membr Biol. 1998 Jul 15;164(2):103-14. doi: 10.1007/s002329900397.
10
Direct observation of ligand colocalization on individual receptor molecules.
Biophys J. 1998 May;74(5):2223-6. doi: 10.1016/S0006-3495(98)77931-7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验