Dunson D B, Weinberg C R
Biostatistics Branch, MD A3-03, National Institute of Environmental Health Sciences, P.O. Box 12233, Research Triangle Park, NC 27709, USA.
Stat Med. 2000 Mar 15;19(5):665-79. doi: 10.1002/(sici)1097-0258(20000315)19:5<665::aid-sim391>3.0.co;2-p.
In prospective studies of human fertility that attempt to identify days of ovulation, couples record each day whether they had intercourse. Depending on the design of the study, couples either (I) mark the dates of intercourse on a chart or (II) mark 'yes' or 'no' for each day of the menstrual cycle. If protocol I is used, intercourse dates that couples fail to record are indistinguishable from dates of no intercourse. Consequently, estimates of day-specific fecundability are biased upwards. If protocol II is used, data from menstrual cycles with missing intercourse information must be discarded in order to fit current fertility models. We propose methods to account for unreported and missing intercourse under the assumption that the missingness mechanism is independent of time conditional on the unobservable true intercourse status. We use probit mixture models to allow for heterogeneity among couples, both in fecundability and in the missingness and non-reporting mechanisms. Markov chain Monte Carlo (MCMC) techniques are used for Bayesian estimation. The methods are generally applicable to the analysis of aggregated Bernoulli outcomes when there is uncertainty in whether a given trial, out of a series of trials, was completed. We illustrate the methods by application to two prospective fertility studies. Published in 2000 by John Wiley & Sons, Ltd.
在旨在确定排卵日的人类生育前瞻性研究中,夫妻双方记录每天是否有过性交。根据研究设计,夫妻要么(I)在图表上标记性交日期,要么(II)在月经周期的每一天标记“是”或“否”。如果使用方案I,夫妻未记录的性交日期与无性交日期无法区分。因此,特定日期受孕能力的估计会向上偏倚。如果使用方案II,为了拟合当前的生育模型,必须舍弃有性交信息缺失的月经周期的数据。我们提出了一些方法,在缺失机制独立于时间(以不可观测的真实性交状态为条件)的假设下,对未报告和缺失的性交情况进行核算。我们使用概率混合模型来考虑夫妻之间在受孕能力、缺失和未报告机制方面的异质性。马尔可夫链蒙特卡罗(MCMC)技术用于贝叶斯估计。当一系列试验中某一给定试验是否完成存在不确定性时,这些方法通常适用于对汇总的伯努利结果进行分析。我们通过应用于两项前瞻性生育研究来说明这些方法。由约翰·威利父子有限公司于2000年出版。