Suppr超能文献

月经周期长度的序列预测。

Sequential predictions of menstrual cycle lengths.

机构信息

Department of Statistical Sciences, University of Bologna, via Zamboni, 33 - 40126 Bologna, Italy.

出版信息

Biostatistics. 2010 Oct;11(4):741-55. doi: 10.1093/biostatistics/kxq020. Epub 2010 Apr 16.

Abstract

Forecasting the length of the menstrual cycle and of its phases is an important problem in infertility management and natural family planning. Using repeated measurements of the length of the entire cycle and of the preovular phase provided by a large English database, we describe a Bayesian hierarchical dynamic approach to the problem. A state-space process is used to model the temporal behavior of the series of lengths for each woman. The individual processes are then embedded into a multivariate system through a Bayesian hierarchy in which model parameters are allowed to vary across subjects according to a specified probability distribution. The most interesting features of the suggested method are (a) it takes into account explicitly the temporal nature of the available data and (b) if combined with a fecundability model, it can be used to forecast the probability of conception in future cycles as a function of any intercourse behavior.

摘要

预测月经周期及其各阶段的长度是不孕管理和自然计划生育中的一个重要问题。我们利用一个大型英语数据库中提供的关于整个周期和排卵前阶段的长度的重复测量数据,描述了一种贝叶斯层次动态方法来解决这个问题。我们使用状态空间过程来对每个女性的一系列长度的时间行为进行建模。然后,通过贝叶斯层次结构将个体过程嵌入到一个多变量系统中,在该层次结构中,模型参数可以根据指定的概率分布在个体之间变化。所提出方法的最有趣的特点是:(a)它明确考虑了可用数据的时间性质;(b)如果与生育能力模型相结合,则可用于预测未来周期中怀孕的可能性,其预测结果是根据任何性行为的函数。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验