Suppr超能文献

细菌对氨基糖苷类和β-内酰胺类抗生素的耐药性:Tn1331转座子模式

Bacterial resistance to aminoglycosides and beta-lactams: the Tn1331 transposon paradigm.

作者信息

Tolmasky M E

机构信息

Institute of Molecular Biology and Nutrition, Department of Biological Science, California State University Fullerton, Fullerton, CA 92834-6850, USA.

出版信息

Front Biosci. 2000 Jan 1;5:D20-9. doi: 10.2741/tolmasky.

Abstract

Aminoglycosides (Ags) are a group of antibiotics that exert their bactericidal activity primarily by inhibition of protein synthesis. Aminoglycoside (Ag) molecules bind to the bacterial 30S ribosomal subunit rendering the ribosomes unavailable for translation, which results in cell death. Although these antibiotics are and have been very useful to treat a variety of bacterial infections, in recent years the number of Ag resistant and multiresistant isolates has seriously increased. Mechanisms of resistance to Ag include enzymatic inactivation by acetyltransferases, nucleotidyltransferases (adenylyltransferases), and phosphotransferases, ribosomal alterations, and reduced permeability. Of all Ags, amikacin (Ak) is the most resistant to the action of Ag-modifying enzymes. However, AAC(6')-I type enzymes (a group of 6'-N-acetyltransferases) can utilize Ak as substrate and confer resistance to this antibiotic in addition to other Ags. The gene aac(6')-Ib was found in various bacterial species and various research groups performed mutagenesis studies on this or related enzymes. In one case, aac(6')-Ib was identified in a transposable element, Tn1331, included in pJHCMW1, a plasmid isolated from a clinical K. pneumoniae strain. Tn1331 includes genes encoding two Ag-modifying enzymes (aac(6')-Ib and ant(3")-Ia) and two beta-lactamases (blaTEM and blaOXA-9). Characterization of other functions of the pJHCMW1 plasmid showed the presence of an RNA-regulated replication origin and a functional oriT. Stability by multimer resolution is achieved by the Tn1331 resolvase.

摘要

氨基糖苷类抗生素(Ags)是一类主要通过抑制蛋白质合成发挥杀菌活性的抗生素。氨基糖苷(Ag)分子与细菌30S核糖体亚基结合,使核糖体无法进行翻译,从而导致细胞死亡。尽管这些抗生素一直以来对治疗多种细菌感染非常有用,但近年来,对Ag耐药和多重耐药的分离株数量已大幅增加。对Ag的耐药机制包括乙酰转移酶、核苷酸转移酶(腺苷酸转移酶)和磷酸转移酶引起的酶失活、核糖体改变以及通透性降低。在所有的Ags中,阿米卡星(Ak)对Ag修饰酶的作用最具抗性。然而,AAC(6')-I型酶(一组6'-N-乙酰转移酶)可以利用Ak作为底物,除了对其他Ags产生耐药性外,还能赋予对这种抗生素的耐药性。基因aac(6')-Ib在多种细菌物种中被发现,不同的研究小组对该酶或相关酶进行了诱变研究。在一个案例中,aac(6')-Ib在一个转座元件Tn1331中被鉴定出来,该元件包含在从临床肺炎克雷伯菌菌株分离的质粒pJHCMW1中。Tn1331包括编码两种Ag修饰酶(aac(6')-Ib和ant(3")-Ia)和两种β-内酰胺酶(blaTEM和blaOXA-9)的基因。对pJHCMW1质粒其他功能的表征显示存在一个RNA调控的复制起点和一个功能性oriT。通过Tn1331解离酶实现多聚体分辨率的稳定性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验