Williams D J, Hall K B
Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, USA.
J Mol Biol. 2000 Mar 17;297(1):251-65. doi: 10.1006/jmbi.2000.3547.
Experimental and theoretical thermodynamic studies of the consequences of 2'-hydroxyl substitution in the RNA UUCG tetraloop show distinct position dependence consistent with the diverse structural contexts of the four-loop ribose hydroxyls in this motif. The results suggest that even for simple substitutions, such as the replacement of the ribose hydroxyl (2'-OH) with hydrogen (2'-H), the free energy change reflects a complex interplay of hydrogen bonding and solvation effects and is influenced by the intrinsic pucker preferences of the nucleotides. Furthermore, theoretical studies suggest that the effect of these mutations in the single-strand state is sequence dependent, in contrast to what is commonly assumed. Free energy perturbation simulations of ribose-deoxyribose mutations in a single-strand dodecamer and in trinucleotide models suggest that in the denatured state, the magnitude of the free energy change for deoxyribose substitutions is determined to a larger extent by the identity of the nucleotide (A, C, G or U) rather than its structural context. Single-strand mutational effects must be considered when interpreting mutational studies in molecular terms.
对RNA UUCG四环中2'-羟基取代后果的实验和理论热力学研究表明,其具有明显的位置依赖性,这与该基序中四环核糖羟基的不同结构背景一致。结果表明,即使对于简单的取代,如用氢(2'-H)取代核糖羟基(2'-OH),自由能变化也反映了氢键和溶剂化效应的复杂相互作用,并受核苷酸固有褶皱偏好的影响。此外,理论研究表明,与通常假设的情况相反,这些突变在单链状态下的效应是序列依赖性的。对单链十二聚体和三核苷酸模型中核糖-脱氧核糖突变的自由能微扰模拟表明,在变性状态下,脱氧核糖取代的自由能变化幅度在很大程度上由核苷酸(A、C、G或U)的身份而非其结构背景决定。在从分子角度解释突变研究时,必须考虑单链突变效应。