Suppr超能文献

使用隐式溶剂化模型对UUCG四环进行无约束随机动力学模拟。

Unrestrained stochastic dynamics simulations of the UUCG tetraloop using an implicit solvation model.

作者信息

Williams D J, Hall K B

机构信息

Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, USA.

出版信息

Biophys J. 1999 Jun;76(6):3192-205. doi: 10.1016/S0006-3495(99)77471-0.

Abstract

Three unrestrained stochastic dynamics simulations have been carried out on the RNA hairpin GGAC[UUCG] GUCC, using the AMBER94 force field (Cornell et al., 1995. J. Am. Chem. Soc. 117:5179-5197) in MacroModel 5.5 (Mohamadi et al., 1990. J. Comp. Chem. 11:440-467) and either the GB/SA continuum solvation model (Still et al., 1990. J. Am. Chem. Soc. 112:6127-6129) or a linear distance-dependent dielectric (1/R) treatment. The linear distance-dependent treatment results in severe distortion of the nucleic acid structure, restriction of all hydroxyl dihedrals, and collapse of the counterion atmosphere over the course of a 5-ns simulation. An additional vacuum simulation without counterions shows somewhat improved behavior. In contrast, the two GB/SA simulations (1.149 and 3.060 ns in length) give average structures within 1.2 A of the initial NMR structure and in excellent agreement with results of an earlier explicit solvent simulation (Miller and Kollman, 1997. J. Mol. Biol. 270:436-450). In a 3-ns GB/SA simulation starting with the incorrect UUCG tetraloop structure (Cheong et al., 1990. Nature. 346:680-682), this loop conformation converts to the correct loop geometry (Allain and Varani, 1995. J. Mol. Biol. 250:333-353), suggesting enhanced sampling relative to the previous explicit solvent simulation. Thermodynamic effects of 2'-deoxyribose substitutions of loop nucleotides were experimentally determined and are found to correlate with the fraction of time the ribose 2'-OH is hydrogen bonded and the distribution of the hydroxyl dihedral is observed in the GB/SA simulations. The GB/SA simulations thus appear to faithfully represent structural features of the RNA without the computational expense of explicit solvent.

摘要

利用AMBER94力场(Cornell等人,1995年。《美国化学会志》117:5179 - 5197),在MacroModel 5.5(Mohamadi等人,1990年。《计算化学杂志》11:440 - 467)中,对RNA发夹GGAC[UUCG]GUCC进行了三次无约束随机动力学模拟,采用GB/SA连续介质溶剂化模型(Still等人,1990年。《美国化学会志》112:6127 - 6129)或线性距离依赖介电常数(1/R)处理。在5纳秒的模拟过程中,线性距离依赖处理导致核酸结构严重扭曲、所有羟基二面角受限以及抗衡离子氛围崩塌。一个额外的无抗衡离子真空模拟显示行为有所改善。相比之下,两次GB/SA模拟(长度分别为1.149和3.060纳秒)给出的平均结构与初始NMR结构相差在1.2埃以内,并且与早期显式溶剂模拟(Miller和Kollman,1997年。《分子生物学杂志》270:436 - 450)的结果高度一致。在一次从错误的UUCG四环结构(Cheong等人,1990年。《自然》346:680 - 682)开始的3纳秒GB/SA模拟中,这个环构象转变为正确环几何结构(Allain和Varani,1995年。《分子生物学杂志》),这表明相对于之前的显式溶剂模拟,采样得到了增强。通过实验确定了环核苷酸2'-脱氧核糖取代的热力学效应,发现其与核糖2'-OH形成氢键的时间分数以及在GB/SA模拟中观察到的羟基二面角分布相关。因此GB/SA模拟似乎能够忠实地呈现RNA的结构特征,而无需显式溶剂模拟的计算成本。

相似文献

1
Unrestrained stochastic dynamics simulations of the UUCG tetraloop using an implicit solvation model.
Biophys J. 1999 Jun;76(6):3192-205. doi: 10.1016/S0006-3495(99)77471-0.
2
Experimental and computational studies of the G[UUCG]C RNA tetraloop.
J Mol Biol. 2000 Apr 14;297(5):1045-61. doi: 10.1006/jmbi.2000.3623.
3
Understanding the thermodynamic stability of an RNA hairpin and its mutant.
Biophys J. 1996 Apr;70(4):1940-8. doi: 10.1016/S0006-3495(96)79758-8.
4
RNA simulations: probing hairpin unfolding and the dynamics of a GNRA tetraloop.
J Mol Biol. 2002 Apr 5;317(4):493-506. doi: 10.1006/jmbi.2002.5447.
7
Molecular dynamics simulation of the structure, dynamics, and thermostability of the RNA hairpins uCACGg and cUUCGg.
J Phys Chem B. 2008 Jan 10;112(1):134-42. doi: 10.1021/jp0764337. Epub 2007 Dec 11.
8
Continuum solvent studies of the stability of RNA hairpin loops and helices.
J Biomol Struct Dyn. 1998 Dec;16(3):671-82. doi: 10.1080/07391102.1998.10508279.
9
Generalized Born and Explicit Solvent Models for Free Energy Calculations in Organic Solvents: Cyclodextrin Dimerization.
J Chem Theory Comput. 2015 Nov 10;11(11):5103-13. doi: 10.1021/acs.jctc.5b00620. Epub 2015 Oct 8.
10
Thermodynamics of 2'-ribose substitutions in UUCG tetraloops.
RNA. 2001 Jan;7(1):44-53. doi: 10.1017/s1355838201001558.

引用本文的文献

1
Performance of Molecular Mechanics Force Fields for RNA Simulations: Stability of UUCG and GNRA Hairpins.
J Chem Theory Comput. 2010 Dec 14;6(12):3836-3849. doi: 10.1021/ct100481h. Epub 2010 Nov 9.
2
RNA Structural Dynamics As Captured by Molecular Simulations: A Comprehensive Overview.
Chem Rev. 2018 Apr 25;118(8):4177-4338. doi: 10.1021/acs.chemrev.7b00427. Epub 2018 Jan 3.
3
Refinement of Generalized Born Implicit Solvation Parameters for Nucleic Acids and Their Complexes with Proteins.
J Chem Theory Comput. 2015 Aug 11;11(8):3714-28. doi: 10.1021/acs.jctc.5b00271.
4
Molecular dynamics of ribosomal elongation factors G and Tu.
Eur Biophys J. 2011 Mar;40(3):289-303. doi: 10.1007/s00249-010-0647-2. Epub 2010 Dec 9.
5
High-resolution NMR structure of an RNA model system: the 14-mer cUUCGg tetraloop hairpin RNA.
Nucleic Acids Res. 2010 Jan;38(2):683-94. doi: 10.1093/nar/gkp956. Epub 2009 Nov 11.
6
RNA phosphodiester backbone dynamics of a perdeuterated cUUCGg tetraloop RNA from phosphorus-31 NMR relaxation analysis.
J Biomol NMR. 2009 Sep;45(1-2):143-55. doi: 10.1007/s10858-009-9343-x. Epub 2009 Jul 28.
7
Conformationally restricted nucleotides as a probe of structure-function relationships in RNA.
RNA. 2008 Aug;14(8):1632-43. doi: 10.1261/rna.866408. Epub 2008 Jul 2.
8
Salt dependence of nucleic acid hairpin stability.
Biophys J. 2008 Jul;95(2):738-52. doi: 10.1529/biophysj.108.131524. Epub 2008 Apr 18.
9
Modified replica exchange simulation methods for local structure refinement.
J Phys Chem B. 2005 Apr 28;109(16):8220-30. doi: 10.1021/jp045437y.
10
Single nucleotide RNA choreography.
Nucleic Acids Res. 2006 Mar 10;34(5):1481-91. doi: 10.1093/nar/gkj500. Print 2006.

本文引用的文献

1
A potential smoothing algorithm accurately predicts transmembrane helix packing.
Nat Struct Biol. 1999 Jan;6(1):50-5. doi: 10.1038/4922.
5
Rules governing the orientation of the 2'-hydroxyl group in RNA.
J Mol Biol. 1997 Nov 21;274(1):54-63. doi: 10.1006/jmbi.1997.1370.
7
A 5-nanosecond molecular dynamics trajectory for B-DNA: analysis of structure, motions, and solvation.
Biophys J. 1997 Nov;73(5):2313-36. doi: 10.1016/S0006-3495(97)78263-8.
9
Hydration of the RNA duplex r(CGCAAAUUUGCG)2 determined by NMR.
Nucleic Acids Res. 1996 Oct 1;24(19):3693-9. doi: 10.1093/nar/24.19.3693.
10
Understanding the thermodynamic stability of an RNA hairpin and its mutant.
Biophys J. 1996 Apr;70(4):1940-8. doi: 10.1016/S0006-3495(96)79758-8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验