Suppr超能文献

Prediction of solute kinetics, acid-base status, and blood volume changes during profiled hemodialysis.

作者信息

Ursino M, Colí L, Brighenti C, Chiari L, de Pascalis A, Avanzolini G

机构信息

Department of Electronics, Computer Science and Systems, University of Bologna, Italy.

出版信息

Ann Biomed Eng. 2000 Feb;28(2):204-16. doi: 10.1114/1.245.

Abstract

A mathematical model of solute kinetics oriented to the simulation of hemodialysis is presented. It includes a three-compartment model of body fluids (plasma, interstitial and intracellular), a two-compartment description of the main solutes (K+, Na+, Cl-, urea, HCO3-, H+), and acid-base equilibrium through two buffer systems (bicarbonate and noncarbonic buffers). Tentative values for the main model parameters can be given a priori, on the basis of body weight and plasma concentration values measured before beginning the session. The model allows computation of the amount of sodium removed during hemodialysis, and may enable the prediction of plasma volume and osmolarity changes induced by a given sodium concentration profile in the dialysate and by a given ultrafiltration profile. Model predictions are compared with clinical data obtained during 11 different profiled hemodialysis sessions, both with all parameters assigned a priori, and after individual estimation of dialysances and mass-transfer coefficients. In most cases, the agreement between the time pattern of model solute concentrations in plasma and clinical data was satisfactory. In two sessions, blood volume changes were directly measured in the patient, and in both cases the agreement with model predictions was acceptable. The present model can be used to improve the dialysis session taking some characteristics of individual patients into account, in order to minimize intradialytic unbalances (such as hypotension or disequilibrium syndrome).

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验