Suppr超能文献

Prediction of solute kinetics, acid-base status, and blood volume changes during profiled hemodialysis.

作者信息

Ursino M, Colí L, Brighenti C, Chiari L, de Pascalis A, Avanzolini G

机构信息

Department of Electronics, Computer Science and Systems, University of Bologna, Italy.

出版信息

Ann Biomed Eng. 2000 Feb;28(2):204-16. doi: 10.1114/1.245.

Abstract

A mathematical model of solute kinetics oriented to the simulation of hemodialysis is presented. It includes a three-compartment model of body fluids (plasma, interstitial and intracellular), a two-compartment description of the main solutes (K+, Na+, Cl-, urea, HCO3-, H+), and acid-base equilibrium through two buffer systems (bicarbonate and noncarbonic buffers). Tentative values for the main model parameters can be given a priori, on the basis of body weight and plasma concentration values measured before beginning the session. The model allows computation of the amount of sodium removed during hemodialysis, and may enable the prediction of plasma volume and osmolarity changes induced by a given sodium concentration profile in the dialysate and by a given ultrafiltration profile. Model predictions are compared with clinical data obtained during 11 different profiled hemodialysis sessions, both with all parameters assigned a priori, and after individual estimation of dialysances and mass-transfer coefficients. In most cases, the agreement between the time pattern of model solute concentrations in plasma and clinical data was satisfactory. In two sessions, blood volume changes were directly measured in the patient, and in both cases the agreement with model predictions was acceptable. The present model can be used to improve the dialysis session taking some characteristics of individual patients into account, in order to minimize intradialytic unbalances (such as hypotension or disequilibrium syndrome).

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验