Bartlett M S, Gaal T, Ross W, Gourse R L
Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706, USA.
J Bacteriol. 2000 Apr;182(7):1969-77. doi: 10.1128/JB.182.7.1969-1977.2000.
We recently identified Escherichia coli RNA polymerase (RNAP) mutants (RNAP beta' Delta215-220 and beta RH454) that form extremely unstable complexes with rRNA P1 (rrn P1) core promoters. The mutant RNAPs reduce transcription and alter growth rate-dependent regulation of rrn P1 core promoters, because the mutant RNAPs require higher concentrations of the initiating nucleoside triphosphate (NTP) for efficient transcription from these promoters than are present in vivo. Nevertheless, the mutants grow almost as well as wild-type cells, suggesting that rRNA synthesis is not greatly perturbed. We report here that the rrn transcription factor FIS activates the mutant RNAPs more strongly than wild-type RNAP, thereby compensating for the altered properties of the mutant RNAPs. FIS activates the mutant RNAPs, at least in part, by reducing the apparent K(ATP) for the initiating NTP. This and other results suggest that FIS affects a step in transcription initiation after closed-complex formation in addition to its stimulatory effect on initial RNAP binding. FIS and NTP levels increase with growth rate, suggesting that changing FIS concentrations, in conjunction with changing NTP concentrations, are responsible for growth rate-dependent regulation of rrn P1 transcription in the mutant strains. These results provide a dramatic demonstration of the interplay between regulatory mechanisms in rRNA transcription.
我们最近鉴定出了大肠杆菌RNA聚合酶(RNAP)突变体(RNAP β' Δ215 - 220和β RH454),它们与rRNA P1(rrn P1)核心启动子形成极其不稳定的复合物。这些突变的RNAP会降低转录水平,并改变rrn P1核心启动子的生长速率依赖性调控,因为与体内存在的浓度相比,这些突变的RNAP从这些启动子进行有效转录需要更高浓度的起始核苷三磷酸(NTP)。然而,这些突变体的生长情况几乎与野生型细胞一样好,这表明rRNA合成并未受到太大干扰。我们在此报告,rrn转录因子FIS对突变的RNAP的激活作用比对野生型RNAP的激活作用更强,从而补偿了突变RNAP改变的特性。FIS至少部分地通过降低起始NTP的表观K(ATP)来激活突变的RNAP。这一结果以及其他结果表明,FIS除了对初始RNAP结合具有刺激作用外,还会在封闭复合物形成后的转录起始步骤中发挥影响。FIS和NTP水平随生长速率增加,这表明FIS浓度的变化与NTP浓度的变化共同导致了突变菌株中rrn P1转录的生长速率依赖性调控。这些结果有力地证明了rRNA转录调控机制之间的相互作用。