Harel N, Mori N, Sawada S, Mount R J, Harrison R V
Auditory Science Laboratory, Brain and Behaviour/Otolaryngology, Toronto, Ontario, M5G 1X8, Canada.
Neuroimage. 2000 Apr;11(4):302-12. doi: 10.1006/nimg.1999.0537.
Using pure-tone sound stimulation, three separate auditory areas are revealed by optical imaging of intrinsic signals in the temporal cortex of the chinchilla (Chinchilla laniger). These areas correlate with primary auditory cortex (AI) and two secondary areas, AII and the anterior auditory field (AAF). We have distinguished AI on the basis of concurrent single-unit electrophysiological recording; neurons within the AI intrinsic signal region have short (<15 ms) onset-response latencies compared with neurons recorded in AII and the AAF. Within AI, AII, and AAF we have been able to define cochleotopic or tonotopic organization from the differences in intrinsic signal areas evoked by pure tones at octave-spaced frequencies from 500 Hz to 16 kHz. The maps in AI and AII are arranged orthogonal to each other.
利用纯音刺激,通过对毛丝鼠(Chinchilla laniger)颞叶皮质内在信号的光学成像揭示了三个独立的听觉区域。这些区域与初级听觉皮层(AI)以及两个次级区域,即AII和前听觉场(AAF)相关。我们通过同步单单元电生理记录来区分AI;与在AII和AAF中记录的神经元相比,AI内在信号区域内的神经元具有较短(<15毫秒)的起始反应潜伏期。在AI、AII和AAF内,我们能够根据500赫兹至16千赫兹倍频程间隔频率的纯音诱发的内在信号区域差异来定义耳蜗定位或音调定位组织。AI和AII中的图谱相互正交排列。