Suppr超能文献

并非所有啮齿动物都一样:皮层组织的现代综合研究

All rodents are not the same: a modern synthesis of cortical organization.

作者信息

Krubitzer Leah, Campi Katharine L, Cooke Dylan F

机构信息

Center for Neuroscience, University of California, Davis, Davis, CA 95618, USA.

出版信息

Brain Behav Evol. 2011;78(1):51-93. doi: 10.1159/000327320. Epub 2011 Jun 23.

Abstract

Rodents are a major order of mammals that is highly diverse in distribution and lifestyle. Five suborders, 34 families, and 2,277 species within this order occupy a number of different niches and vary along several lifestyle dimensions such as diel pattern (diurnal vs. nocturnal), terrain niche, and diet. For example, the terrain niche of rodents includes arboreal, aerial, terrestrial, semi-aquatic, burrowing, and rock dwelling. Not surprisingly, the behaviors associated with particular lifestyles are also highly variable and thus the neocortex, which generates these behaviors, has undergone corresponding alterations across species. Studies of cortical organization in species that vary along several dimensions such as terrain niche, diel pattern, and rearing conditions demonstrate that the size and number of cortical fields can be highly variable within this order. The internal organization of a cortical field also reflects lifestyle differences between species and exaggerates behaviorally relevant effectors such as vibrissae, teeth, or lips. Finally, at a cellular level, neuronal number and density varies for the same cortical field in different species and is even different for the same species reared in different conditions (laboratory vs. wild-caught). These very large differences across and within rodent species indicate that there is no generic rodent model. Rather, there are rodent models suited for specific questions regarding the development, function, and evolution of the neocortex.

摘要

啮齿动物是哺乳动物中的一个主要目,在分布和生活方式上具有高度多样性。该目下有五个亚目、34个科和2277个物种,占据了许多不同的生态位,并且在几个生活方式维度上存在差异,如昼夜活动模式(昼行性与夜行性)、地形生态位和饮食。例如,啮齿动物的地形生态位包括树栖、空中、陆地、半水生、穴居和岩居。毫不奇怪,与特定生活方式相关的行为也高度可变,因此产生这些行为的新皮层在不同物种间也经历了相应的改变。对在地形生态位、昼夜活动模式和饲养条件等多个维度上存在差异的物种的皮层组织研究表明,在这个目内,皮层区域的大小和数量可能有很大差异。皮层区域的内部组织也反映了物种间的生活方式差异,并突出了与行为相关的效应器,如触须、牙齿或嘴唇。最后,在细胞水平上,不同物种中同一皮层区域的神经元数量和密度不同,甚至在不同条件下饲养的同一物种(实验室饲养与野外捕获)也有所不同。啮齿动物物种之间及内部的这些巨大差异表明不存在通用的啮齿动物模型。相反,存在适合于关于新皮层发育、功能和进化的特定问题的啮齿动物模型。

相似文献

1
All rodents are not the same: a modern synthesis of cortical organization.
Brain Behav Evol. 2011;78(1):51-93. doi: 10.1159/000327320. Epub 2011 Jun 23.
2
The organizational variability of the rodent somatosensory cortex.
Rev Neurosci. 2007;18(3-4):283-94. doi: 10.1515/revneuro.2007.18.3-4.283.
3
The functional and anatomical organization of marsupial neocortex: evidence for parallel evolution across mammals.
Prog Neurobiol. 2007 Jun;82(3):122-41. doi: 10.1016/j.pneurobio.2007.03.003. Epub 2007 Apr 1.
4
Order-specific quantitative patterns of cortical gyrification.
Eur J Neurosci. 2007 May;25(9):2705-12. doi: 10.1111/j.1460-9568.2007.05524.x. Epub 2007 Apr 25.
5
Trade-Offs in the Sensory Brain between Diurnal and Nocturnal Rodents.
Brain Behav Evol. 2024;99(3):123-143. doi: 10.1159/000538090. Epub 2024 Apr 3.
9
The evolution of visual cortex: where is V2?
Trends Neurosci. 1999 Jun;22(6):242-8. doi: 10.1016/s0166-2236(99)01398-3.

引用本文的文献

1
A Rapid Anterior Auditory Processing Stream through the Insulo-parietal Auditory Field in the Rat.
J Neurosci. 2025 Sep 3;45(36):e2382242025. doi: 10.1523/JNEUROSCI.2382-24.2025.
5
Establishing neuroanatomical correspondences across mouse and marmoset brain structures.
Res Sq. 2024 May 21:rs.3.rs-4373678. doi: 10.21203/rs.3.rs-4373678/v1.
6
Where Top-Down Meets Bottom-Up: Cell-Type Specific Connectivity Map of the Whisker System.
Neuroinformatics. 2024 Jul;22(3):251-268. doi: 10.1007/s12021-024-09658-6. Epub 2024 May 20.
7
Domestic dogs as a comparative model for social neuroscience: Advances and challenges.
Neurosci Biobehav Rev. 2024 Jul;162:105700. doi: 10.1016/j.neubiorev.2024.105700. Epub 2024 May 4.
9
A new map of the rat isocortex and proisocortex: cytoarchitecture and M receptor distribution patterns.
Brain Struct Funct. 2024 Nov;229(8):1795-1822. doi: 10.1007/s00429-023-02654-7. Epub 2023 Jun 15.

本文引用的文献

1
Visual acuity and spatial contrast sensitivity in tree squirrels.
Behav Processes. 1982 Dec;7(4):367-75. doi: 10.1016/0376-6357(82)90008-0.
3
The functional organization and cortical connections of motor cortex in squirrels.
Cereb Cortex. 2012 Sep;22(9):1959-78. doi: 10.1093/cercor/bhr228. Epub 2011 Oct 20.
4
Not all brains are made the same: new views on brain scaling in evolution.
Brain Behav Evol. 2011;78(1):22-36. doi: 10.1159/000327318. Epub 2011 Jun 17.
5
6
Gateways of ventral and dorsal streams in mouse visual cortex.
J Neurosci. 2011 Feb 2;31(5):1905-18. doi: 10.1523/JNEUROSCI.3488-10.2011.
7
Optimal parameters for microstimulation derived forelimb movement thresholds and motor maps in rats and mice.
J Neurosci Methods. 2011 Mar 15;196(1):60-9. doi: 10.1016/j.jneumeth.2010.12.028. Epub 2011 Jan 8.
10
Motor control by sensory cortex.
Science. 2010 Nov 26;330(6008):1240-3. doi: 10.1126/science.1195797.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验