Suppr超能文献

Polycation-based DNA complexes for tumor-targeted gene delivery in vivo.

作者信息

Kircheis R, Schüller S, Brunner S, Ogris M, Heider K H, Zauner W, Wagner E

机构信息

Boehringer Ingelheim Austria, Vienna, Austria.

出版信息

J Gene Med. 1999 Mar-Apr;1(2):111-20. doi: 10.1002/(SICI)1521-2254(199903/04)1:2<111::AID-JGM22>3.0.CO;2-Y.

Abstract

BACKGROUND

Efficient and target-specific in vivo gene delivery is a major challenge in gene therapy. Compared to cell culture application, in vivo gene delivery faces a variety of additional obstacles such as anatomical size constraints, interactions with biological fluids and extracellular matrix, and binding to a broad variety of non-target cell types.

METHODS

Polycation-based vectors, including adenovirus-enhanced transferrinfection (AVET) and transferrin-polyethylenimine (Tf-PEI), were tested for gene delivery into subcutaneously growing tumors after local and systemic application. DNA biodistribution and reporter gene expression was measured in the major organs and in the tumor.

RESULTS

Gene transfer after intratumoral application was 10-100 fold more efficient with Tf-PEI/DNA or AVET complexes in comparison to naked DNA. Targeted gene delivery into subcutaneously growing tumors after systemic application was achieved using electroneutral AVET complexes and sterically stabilized PEGylated Tf-PEI/DNA complexes, whereas application of positively charged polycation/DNA complexes resulted in predominant gene expression in the lungs and was associated by considerable toxicity.

CONCLUSION

For systemic application, the physical and colloidal parameters of the transfection complexes, such as particle size, stability, and surface charge, determine DNA biodistribution, toxicity, and transfection efficacy. By controlling these parameters, DNA biodistribution and gene expression can be targeted to different organs.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验