Suppr超能文献

打破最后的障碍:脂质纳米粒中阳离子和离子化脂质结构的进化以逃避内涵体。

Breaking the final barrier: Evolution of cationic and ionizable lipid structure in lipid nanoparticles to escape the endosome.

机构信息

Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA.

Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.

出版信息

Adv Drug Deliv Rev. 2024 Nov;214:115446. doi: 10.1016/j.addr.2024.115446. Epub 2024 Sep 16.

Abstract

In the past decade, nucleic acid therapies have seen a boon in development and clinical translation largely due to advances in nanotechnology that have enabled their safe and targeted delivery. Nanoparticles can protect nucleic acids from degradation by serum enzymes and can facilitate entry into cells. Still, achieving endosomal escape to allow nucleic acids to enter the cytoplasm has remained a significant barrier, where less than 5% of nanoparticles within the endo-lysosomal pathway are able to transfer their cargo to the cytosol. Lipid-based drug delivery vehicles, particularly lipid nanoparticles (LNPs), have been optimized to achieve potent endosomal escape, and thus have been the vector of choice in the clinic as demonstrated by their utilization in the COVID-19 mRNA vaccines. The success of LNPs is in large part due to the rational design of lipids that can specifically overcome endosomal barriers. In this review, we chart the evolution of lipid structure from cationic lipids to ionizable lipids, focusing on structure-function relationships, with a focus on how they relate to endosomal escape. Additionally, we examine recent advancements in ionizable lipid structure as well as discuss the future of lipid design.

摘要

在过去的十年中,由于纳米技术的进步,核酸疗法在开发和临床转化方面取得了蓬勃发展,使它们能够安全且靶向地递送到体内。纳米颗粒可以保护核酸免受血清酶的降解,并促进其进入细胞。然而,实现内涵体逃逸以允许核酸进入细胞质仍然是一个重大的障碍,在内涵体-溶酶体途径中,只有不到 5%的纳米颗粒能够将其货物转移到细胞质中。基于脂质的药物递送载体,特别是脂质纳米颗粒(LNPs),已经过优化以实现有效的内涵体逃逸,因此已被临床选为首选载体,这在其在 COVID-19 mRNA 疫苗中的应用中得到了证明。LNPs 的成功在很大程度上归因于可以特异性克服内涵体障碍的脂质的合理设计。在这篇综述中,我们绘制了从阳离子脂质到可离子化脂质的脂质结构演变图,重点关注结构-功能关系,并特别关注它们与内涵体逃逸的关系。此外,我们还研究了可离子化脂质结构的最新进展,并讨论了脂质设计的未来。

相似文献

2
Nucleic Acid-Loaded Lipid Nanoparticle Interactions with Model Endosomal Membranes.核酸负载脂质纳米颗粒与模型内体膜的相互作用。
ACS Appl Mater Interfaces. 2022 Jul 6;14(26):30371-30384. doi: 10.1021/acsami.2c06065. Epub 2022 Jun 27.
8
The 60-year evolution of lipid nanoparticles for nucleic acid delivery.脂质纳米颗粒用于核酸递送的 60 年发展历程。
Nat Rev Drug Discov. 2024 Sep;23(9):709-722. doi: 10.1038/s41573-024-00977-6. Epub 2024 Jul 4.
9
Chemistry of Lipid Nanoparticles for RNA Delivery.脂质纳米颗粒的 RNA 递送化学。
Acc Chem Res. 2022 Jan 4;55(1):2-12. doi: 10.1021/acs.accounts.1c00544. Epub 2021 Dec 1.

引用本文的文献

8
Unlock the sustained therapeutic efficacy of mRNA.释放信使核糖核酸的持续治疗效果。
J Control Release. 2025 Jul 10;383:113837. doi: 10.1016/j.jconrel.2025.113837. Epub 2025 May 12.

本文引用的文献

3
Endosomal escape: A bottleneck for LNP-mediated therapeutics.内涵体逃逸:LNP 介导治疗的瓶颈。
Proc Natl Acad Sci U S A. 2024 Mar 12;121(11):e2307800120. doi: 10.1073/pnas.2307800120. Epub 2024 Mar 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验