Suppr超能文献

用单光子捕获一个原子。

Trapping an atom with single photons.

作者信息

Pinkse PW, Fischer T, Maunz P, Rempe G

机构信息

Max-Planck-Institut fur Quantenoptik, Garching, Germany.

出版信息

Nature. 2000 Mar 23;404(6776):365-8. doi: 10.1038/35006006.

Abstract

The creation of a photon-atom bound state was first envisaged for the case of an atom in a long-lived excited state inside a high-quality microwave cavity. In practice, however, light forces in the microwave domain are insufficient to support an atom against gravity. Although optical photons can provide forces of the required magnitude, atomic decay rates and cavity losses are larger too, and so the atom-cavity system must be continually excited by an external laser. Such an approach also permits continuous observation of the atom's position, by monitoring the light transmitted through the cavity. The dual role of photons in this system distinguishes it from other single-atom experiments such as those using magneto-optical traps, ion traps or a far-off-resonance optical trap. Here we report high-finesse optical cavity experiments in which the change in transmission induced by a single slow atom approaching the cavity triggers an external feedback switch which traps the atom in a light field containing about one photon on average. The oscillatory motion of the trapped atom induces oscillations in the transmitted light intensity; we attribute periodic structure in intensity-correlation-function data to 'long-distance' flights of the atom between different anti-nodes of the standing-wave in the cavity. The system should facilitate investigations of the dynamics of single quantum objects and may find future applications in quantum information processing.

摘要

光子 - 原子束缚态的产生最初是针对处于高品质微波腔内长寿命激发态的原子这一情况设想的。然而在实际中,微波领域的光力不足以支撑原子对抗重力。尽管光学光子能够提供所需大小的力,但原子的衰变率和腔损耗也更大,所以原子 - 腔系统必须由外部激光持续激发。通过监测透过腔的光,这种方法还能持续观测原子的位置。光子在该系统中的双重作用使其有别于其他单原子实验,比如那些使用磁光阱、离子阱或远失谐光学阱的实验。在此我们报告了高精细度光学腔实验,其中单个慢原子靠近腔时所引起的透射变化触发了一个外部反馈开关,该开关将原子捕获在一个平均包含约一个光子的光场中。被捕获原子的振荡运动会在透射光强度中引发振荡;我们将强度关联函数数据中的周期性结构归因于原子在腔内驻波不同波腹之间的“长距离”飞行。该系统应有助于对单量子物体动力学的研究,并可能在未来的量子信息处理中找到应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验