Kim T, Kim T Y, Lee W G, Yim J, Kim T K
National Creative Research Initiative Center for Genetic Reprogramming, Institute for Molecular Biology and Genetics, Seoul National University, Seoul 151-742, Korea.
J Biol Chem. 2000 Jun 2;275(22):16910-7. doi: 10.1074/jbc.M000524200.
Small molecules that modulate specific protein functions are valuable tools for dissecting complex signaling pathways. Here, we identified a small molecule that induces the assembly of the interferon-beta (IFN-beta) enhanceosome by stimulating all the enhancer-binding activator proteins: ATF2/c-JUN, IRF3, and p50/p65 of NF-kappaB. This compound stimulates mitogen-activated protein kinase kinase kinase 1 (MEKK1), which is a member of a family of proteins involved in stress-mediated signaling pathways. Consistent with this, MEKK1 activates IRF3 in addition to ATF2/c-JUN and NF-kappaB for the assembly of the IFN-beta enhanceosome. MEKK1 activates IRF3 through the c-JUN amino-terminal kinase (JNK) pathway but not the p38 and IkappaB kinase (IKK) pathway. Taken together with previous observations, these results implicate that, for the assembly of an IFN-beta enhanceosome, MEKK1 can induce IRF3 and ATF2/c-JUN through the JNK pathway, whereas it can induce NF-kappaB through the IKK pathway. Thus, specific MEKK family proteins may be able to integrate some of multiple signal transduction pathways leading to the specific activation of the IFN-beta enhanceosome.