Mehler M F
Departments of Neurology, Neuroscience and Psychiatry, the Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
Brain Res Brain Res Rev. 2000 Apr;32(1):277-307. doi: 10.1016/s0165-0173(99)00090-9.
Duchenne muscular dystrophy (DMD) and the allelic disorder Becker muscular dystrophy (BMD) are common X-linked recessive neuromuscular disorders that are associated with a spectrum of genetically based developmental cognitive and behavioral disabilities. Seven promoters scattered throughout the huge DMD/BMD gene locus normally code for distinct isoforms of the gene product, dystrophin, that exhibit nervous system developmental, regional and cell-type specificity. Dystrophin is a complex plasmalemmal-cytoskeletal linker protein that possesses multiple functional domains, autosomal and X-linked homologs and associated binding proteins that form multiunit signaling complexes whose composition is unique to each cellular and developmental context. Through additional interactions with a variety of proteins of the extracellular matrix, plasma membrane, cytoskeleton and distinct intracellular compartments, brain dystrophin acquires the capability to participate in the modulatory actions of a large number of cellular signaling pathways. During neural development, dystrophin is expressed within the neural tube and selected areas of the embryonic and postnatal neuraxis, and may regulate distinct aspects of neurogenesis, neuronal migration and cellular differentiation. By contrast, in the mature brain, dystrophin is preferentially expressed by specific regional neuronal subpopulations within proximal somadendritic microdomains associated with synaptic terminal membranes. Increasing experimental evidence suggests that in adult life, dystrophin normally modulates synaptic terminal integrity, distinct forms of synaptic plasticity and regional cellular signal integration. At a systems level, dystrophin may regulate essential components of an integrated sensorimotor attentional network. Dystrophin deficiency in DMD/BMD patients and in the mdx mouse model appears to impair intracellular calcium homeostasis and to disrupt multiple protein-protein interactions that normally promote information transfer and signal integration from the extracellular environment to the nucleus within regulated microdomains. In DMD/BMD, the individual profiles of cognitive and behavioral deficits, mental retardation and other phenotypic variations appear to depend on complex profiles of transcriptional regulation associated with individual dystrophin mutations that result in the corresponding presence or absence of individual brain dystrophin isoforms that normally exhibit developmental, regional and cell-type-specific expression and functional regulation. This composite experimental model will allow fine-level mapping of cognitive-neurogenetic associations that encompass the interrelationships between molecular, cellular and systems levels of signal integration, and will further our understanding of complex gene-environmental interactions and the pathogenetic basis of developmental disorders associated with mental retardation.
杜兴氏肌营养不良症(DMD)和等位基因疾病贝克氏肌营养不良症(BMD)是常见的X连锁隐性神经肌肉疾病,与一系列基于基因的发育性认知和行为障碍有关。分布在巨大的DMD/BMD基因座中的七个启动子通常编码基因产物抗肌萎缩蛋白的不同同工型,这些同工型表现出神经系统发育、区域和细胞类型特异性。抗肌萎缩蛋白是一种复杂的质膜-细胞骨架连接蛋白,具有多个功能结构域、常染色体和X连锁同源物以及相关的结合蛋白,这些蛋白形成多单位信号复合物,其组成在每个细胞和发育环境中都是独特的。通过与细胞外基质、质膜、细胞骨架和不同细胞内区室的多种蛋白质的额外相互作用,脑抗肌萎缩蛋白获得了参与大量细胞信号通路调节作用的能力。在神经发育过程中,抗肌萎缩蛋白在神经管以及胚胎和出生后神经轴的特定区域表达,并可能调节神经发生、神经元迁移和细胞分化的不同方面。相比之下,在成熟大脑中,抗肌萎缩蛋白优先由与突触终末膜相关的近端体树突微区内的特定区域神经元亚群表达。越来越多的实验证据表明,在成年期,抗肌萎缩蛋白通常调节突触终末完整性、不同形式的突触可塑性和区域细胞信号整合。在系统水平上,抗肌萎缩蛋白可能调节整合的感觉运动注意力网络的关键组成部分。DMD/BMD患者和mdx小鼠模型中的抗肌萎缩蛋白缺乏似乎会损害细胞内钙稳态,并破坏多种蛋白质-蛋白质相互作用,这些相互作用通常促进信息从细胞外环境向受调节微区内的细胞核传递和信号整合。在DMD/BMD中,认知和行为缺陷、智力迟钝和其他表型变异的个体特征似乎取决于与个体抗肌萎缩蛋白突变相关的复杂转录调控特征,这些突变导致相应的个体脑抗肌萎缩蛋白同工型的存在或缺失,这些同工型通常表现出发育、区域和细胞类型特异性表达和功能调控。这个综合实验模型将允许对认知-神经遗传关联进行精细水平的定位,包括信号整合的分子、细胞和系统水平之间的相互关系,并将增进我们对复杂的基因-环境相互作用以及与智力迟钝相关的发育障碍的发病机制基础的理解。