Suppr超能文献

利用自适应超媒体改进知识导航。

Improving knowledge navigation with adaptive hypermedia.

作者信息

Pagesy R, Soula G, Fieschi M

机构信息

LERTIM, Faculté de Médecine, Université de la Méditerranée, Marseille, France.

出版信息

Med Inform Internet Med. 2000 Jan-Mar;25(1):63-77. doi: 10.1080/146392300298256.

Abstract

Web applications provide access to a tremendous amount of information: hypertext, hypermedia and on-line databases. However, since users' knowledge, motivation and goals are different, they cannot find the relevant information in the data being diffused. Giving the users applications or environments that will take their differences into account is one way of improving their access to knowledge. The authors' objective is to improve knowledge navigation by adapting users' navigation. Adaptive hypermedia is one way of returning information adapted to the user. This paper presents an adaptive hypermedia system based on user representation with the stereotype model. Both adaptive presentation and navigation techniques are also implemented. This paper focuses on the architecture of the general adaptive hypermedia system as well as adaptivity management. A-TOP, a medical adaptive hypermedia prototype implemented in a hospital intranet system, is described. Adaptive hypermedia is a preliminary approach to the vast problem of user access to knowledge. In conclusion, we hope to extend our reflections to the problems involved in access to knowledge on the World Wide Web (Web).

摘要

Web应用程序提供了对大量信息的访问:超文本、超媒体和在线数据库。然而,由于用户的知识、动机和目标各不相同,他们无法在传播的数据中找到相关信息。为用户提供能够考虑到他们差异的应用程序或环境是改善他们获取知识的一种方式。作者的目标是通过调整用户的导航来改善知识导航。自适应超媒体是一种返回适合用户的信息的方式。本文提出了一种基于刻板印象模型的用户表示的自适应超媒体系统。同时还实现了自适应呈现和导航技术。本文重点关注通用自适应超媒体系统的架构以及适应性管理。描述了在医院内联网系统中实现的医学自适应超媒体原型A-TOP。自适应超媒体是解决用户获取知识这一广泛问题的初步方法。总之,我们希望将我们的思考扩展到万维网(Web)上获取知识所涉及的问题。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验