Renganathan M, Cummins T R, Hormuzdiar W N, Black J A, Waxman S G
Department of Neurology, Yale Medical School, New Haven 06510, USA.
J Neurophysiol. 2000 Apr;83(4):2431-42. doi: 10.1152/jn.2000.83.4.2431.
In this study, we examined whether nitric oxide synthase (NOS) is upregulated in small dorsal root ganglion (DRG) neurons after axotomy and, if so, whether the upregulation of NOS modulates Na(+) currents in these cells. We identified axotomized C-type DRG neurons using a fluorescent label, hydroxystilbamine methanesulfonate and found that sciatic nerve transection upregulates NOS activity in 60% of these neurons. Fast-inactivating tetrodotoxin-sensitive (TTX-S) Na(+) ("fast") current and slowly inactivating tetrodotoxin-resistant (TTX-R) Na(+) ("slow") current were present in control noninjured neurons with current densities of 1.08 +/- 0. 09 nA/pF and 1.03 +/- 0.10 nA/pF, respectively (means +/- SE). In some control neurons, a persistent TTX-R Na(+) current was observed with current amplitude as much as approximately 50% of the TTX-S Na(+) current amplitude and 100% of the TTX-R Na(+) current amplitude. Seven to 10 days after axotomy, current density of the fast and slow Na(+) currents was reduced to 0.58 +/- 0.05 nA/pF (P < 0.01) and 0.2 +/- 0.05 nA/pF (P < 0.001), respectively. Persistent TTX-R Na(+) current was not observed in axotomized neurons. Nitric oxide (NO) produced by the upregulation of NOS can block Na(+) currents. To examine the role of NOS upregulation on the reduction of the three types of Na(+) currents in axotomized neurons, axotomized DRG neurons were incubated with 1 mM N(G)-nitro-L-arginine methyl ester (L-NAME), a NOS inhibitor. The current density of fast and slow Na(+) channels in these neurons increased to 0.82 +/- 0.08 nA/pF (P < 0.01) and 0.34 +/- 0.04 nA/pF (P < 0.05), respectively. However, we did not observe any persistent TTX-R current in axotomized neurons incubated with L-NAME. These results demonstrate that endogenous NO/NO-related species block both fast and slow Na(+) current in DRG neurons and suggest that NO functions as an autocrine regulator of Na(+) currents in injured DRG neurons.
在本研究中,我们检测了轴突切断后小背根神经节(DRG)神经元中一氧化氮合酶(NOS)是否上调,若上调,NOS的上调是否会调节这些细胞中的钠电流。我们使用荧光标记物甲磺酸羟基芪胺来识别轴突切断的C型DRG神经元,发现坐骨神经横断可使60%的此类神经元的NOS活性上调。对照未损伤神经元中存在快速失活的河豚毒素敏感(TTX-S)钠(“快”)电流和缓慢失活的河豚毒素抵抗(TTX-R)钠(“慢”)电流,其电流密度分别为1.08±0.09 nA/pF和1.03±0.10 nA/pF(均值±标准误)。在一些对照神经元中,观察到一种持续的TTX-R钠电流,其电流幅度高达TTX-S钠电流幅度的约50%以及TTX-R钠电流幅度的100%。轴突切断后7至10天,快钠电流和慢钠电流的电流密度分别降至0.58±0.05 nA/pF(P<0.01)和0.2±0.05 nA/pF(P<0.001)。在轴突切断的神经元中未观察到持续的TTX-R钠电流。NOS上调产生的一氧化氮(NO)可阻断钠电流。为检测NOS上调在轴突切断神经元中三种钠电流减少中的作用,将轴突切断的DRG神经元与1 mM N-硝基-L-精氨酸甲酯(L-NAME,一种NOS抑制剂)一起孵育。这些神经元中快钠通道和慢钠通道的电流密度分别增加至0.82±0.08 nA/pF(P<0.01)和0.34±0.04 nA/pF(P<0.05)。然而,在与L-NAME一起孵育的轴突切断神经元中,我们未观察到任何持续的TTX-R电流。这些结果表明内源性NO/NO相关物质可阻断DRG神经元中的快钠电流和慢钠电流,并提示NO在受损DRG神经元中作为钠电流的自分泌调节因子发挥作用。