Suppr超能文献

Age effect of type I collagen on morphogenesis of Mardin-Darby canine kidney cells.

作者信息

Jiang S T, Liao K K, Liao M C, Tang M J

机构信息

Department of Physiology, National Cheng Kung University Medical College, Tainan, Taiwan.

出版信息

Kidney Int. 2000 Apr;57(4):1539-48. doi: 10.1046/j.1523-1755.2000.00998.x.

Abstract

BACKGROUND

Mardin-Darby canine kidney (MDCK) cells cultured in hydrated collagen gels develop simple epithelial cysts or branching tubules, depending on the presence of hepatocyte growth factor (HGF). Constituents of extracellular matrix can modulate the morphogenesis of MDCK cells. Collagen is one of the few well-defined structural entities that display gross structural changes with aging. This study was conducted to delineate the effects of age-induced changes of collagen on the morphogenesis of MDCK cells cultured in collagen gel.

METHODS

We employed Y224 and MDCK clone II 3B5 cells to study cystogenesis and branching tubulogenesis, respectively. Cells were cultured in three-dimensional collagen gels prepared from 1-, 4-, 8-, and 16-month-old rat tail tendons, and their capacity to develop cysts or branching tubules was assessed. We also analyzed the compositions and physical structures of collagen of various ages.

RESULTS

Y224 cells developed generally larger spherical cysts in collagen gels prepared from rats that were more than four months old. The ratio of apoptosis of cells cultured in one-month-old collagen gel was markedly higher than in the gel of older ages. The results were consistent with the observations that collagen gel overlay-induced apoptosis of Y224 cells in one-month-old collagen was higher than that in older collagen. On the other hand, 3B5 cells exhibited a remarkable scattering morphology when cultured in one- or four-month-old collagen gel with HGF. In contrast, 3B5 cells exhibited more intercellular adhesion and were organized into branching tubule structures only in the collagen gel that was more than eight months old. The differences in morphogenesis could be explained by the observations that collagen of younger ages exerted markedly higher HGF-triggered migration capability than collagen of older ages.

CONCLUSIONS

Age-related alterations in collagen influence epithelial cell morphogenesis via regulation of cell apoptosis, proliferation, and/or motility.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验