MacPhee C E, Dobson C M
Oxford Centre for Molecular Sciences, New Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX13QT, UK.
J Mol Biol. 2000 Apr 14;297(5):1203-15. doi: 10.1006/jmbi.2000.3600.
We have examined the chemical dissection and subsequent reassembly of fibrils formed by a ten-residue peptide to probe the forces that drive the formation of amyloid. The peptide, TTR(10-19), encompasses the A strand of the inner beta-sheet structure that lines the thyroid hormone binding site of the human plasma protein transthyretin. When dissolved in water under low pH conditions the peptide readily forms amyloid fibrils. Electron microscopy of these fibrils indicates the presence of long (>1000 nm) rigid structures of uniform diameter (approximately 14 nm). Addition of urea (3 M) to preformed fibrils disrupts these rigid structures. The partially disrupted fibrils form flexible ribbon-like arrays, which are composed of a number of clearly visible protofilaments (3-4 nm diameter). These protofilaments are highly stable, and resist denaturation in 6 M urea at 75 degrees C over a period of hours. High concentrations (>50%, v/v) of 2,2,2-trifluoroethanol also dissociate TTR(10-19) fibrils to the constituent protofilaments, but these slowly dissociate to monomeric, soluble peptides with extensive alpha-helical structure. Dilution of the denaturant or co-solvent at the stage when dissociation to protofilaments has occurred results in the efficient reassembly of fibrils. These results indicate that assembly of fibrils from protofilaments involves relatively weak and predominantly hydrophobic interactions, whereas assembly of peptides into protofilaments involves both electrostatic and hydrophobic forces, resulting in a highly stable and compact structures.
我们研究了由一个十肽形成的纤维的化学剖析及随后的重新组装,以探究驱动淀粉样蛋白形成的力量。该肽TTR(10 - 19)包含人血浆蛋白转甲状腺素蛋白甲状腺激素结合位点内衬的内部β-折叠结构的A链。当在低pH条件下溶于水时,该肽很容易形成淀粉样纤维。这些纤维的电子显微镜观察表明存在长(>1000 nm)且直径均匀(约14 nm)的刚性结构。向预先形成的纤维中添加尿素(3 M)会破坏这些刚性结构。部分破坏的纤维形成柔性带状阵列,其由许多清晰可见的原纤维(直径3 - 4 nm)组成。这些原纤维高度稳定,在75℃的6 M尿素中数小时内抵抗变性。高浓度(>50%,v/v)的2,2,2 - 三氟乙醇也会将TTR(10 - 19)纤维解离成组成原纤维,但这些原纤维会缓慢解离成具有广泛α-螺旋结构的单体可溶性肽。在发生解离成原纤维的阶段稀释变性剂或共溶剂会导致纤维的有效重新组装。这些结果表明,从原纤维组装纤维涉及相对较弱且主要是疏水相互作用,而将肽组装成原纤维涉及静电和疏水作用力,从而形成高度稳定和紧凑的结构。