Bousfield G R, Baker V L, Gotschall R R, Butnev V Y
Department of Biological Sciences, Wichita State University, 1845 Fairmount, Wichita, Kansas 67260-0026, USA.
Methods. 2000 May;21(1):15-39. doi: 10.1006/meth.2000.0972.
Complete carbohydrate composition analysis of glycoprotein hormones, their subunits, and oligosaccharides isolated from individual glycosylation sites can be accomplished using high-pH anion-exchange chromatography combined with pulsed amperometric detection. Neutral and amino sugars are analyzed from the same hydrolyzate by isocratic chromatography on a Dionex CarboPAC PA1 column in 16 mM NaOH. Sialic acid is quantified following mild hydrolysis conditions on the same column in 150 mM sodium acetate in 150 mM NaOH. Ion chromatography on a Dionex AS4A column in 1.8 mM Na(2)CO(3)/1.7 mM NaHCO(3); postcolumn, in-line anion micromembrane suppression; and conductivity detection can be used to quantify sulfate, a common component of pituitary glycoprotein hormone oligosaccharides. Mass spectrometric analysis before and after elimination of oligosaccharides from a single glycosylation site can provide an estimate of the average oligosaccharide mass, which facilitates interpretation of oligosaccharide composition data. Following release by peptide N-glycanase (PNGase) digestion and purification by ultrafiltration, oligosaccharides can be characterized by a high-resolution oligosaccharide mapping technique using the same equipment employed for composition analysis. Oligosaccharide mapping can be applied to the entire hormone, individual subunits, or individual glycosylation sites by varying PNGase digestion conditions or substrates. Oligosaccharide release by PNGase is readily monitored by SDS-PAGE. Site-specific deglycosylation can be confirmed by amino acid sequence analysis. For routine isolation of oligosaccharides, addition of 2-aminobenzamide at the reducing terminus facilitates detection; however, the oligosaccharide retention times are altered. Composition analysis is also affected as the 2-aminobenzamide-modified GlcNAc peak overlaps the fucose peak.
使用高pH值阴离子交换色谱结合脉冲安培检测法,可完成对糖蛋白激素、其亚基以及从各个糖基化位点分离出的寡糖的完整碳水化合物组成分析。通过在Dionex CarboPAC PA1柱上于16 mM NaOH中进行等度色谱分析,可从同一水解产物中分析中性糖和氨基糖。在同一柱上于150 mM醋酸钠和150 mM NaOH中进行温和水解条件后,对唾液酸进行定量。在Dionex AS4A柱上于1.8 mM Na₂CO₃/1.7 mM NaHCO₃中进行离子色谱分析;柱后进行在线阴离子微膜抑制和电导检测,可用于定量垂体糖蛋白激素寡糖的常见成分硫酸盐。对单个糖基化位点的寡糖去除前后进行质谱分析,可提供平均寡糖质量的估计值,这有助于解释寡糖组成数据。通过肽N-聚糖酶(PNGase)消化释放并经超滤纯化后,寡糖可用与组成分析相同的设备通过高分辨率寡糖图谱技术进行表征。通过改变PNGase消化条件或底物,寡糖图谱可应用于整个激素、单个亚基或单个糖基化位点。PNGase释放寡糖很容易通过SDS-PAGE监测。位点特异性去糖基化可通过氨基酸序列分析来确认。对于寡糖的常规分离,在还原末端添加2-氨基苯甲酰胺有助于检测;然而,寡糖的保留时间会改变。组成分析也会受到影响,因为2-氨基苯甲酰胺修饰的GlcNAc峰与岩藻糖峰重叠。