Suppr超能文献

基于压力的血流储备分数评估系列心外膜狭窄:理论基础与动物实验验证

Pressure-derived fractional flow reserve to assess serial epicardial stenoses: theoretical basis and animal validation.

作者信息

De Bruyne B, Pijls N H, Heyndrickx G R, Hodeige D, Kirkeeide R, Gould K L

机构信息

Cardiovascular Center, Aalst, Belgium.

出版信息

Circulation. 2000 Apr 18;101(15):1840-7. doi: 10.1161/01.cir.101.15.1840.

Abstract

Background-Fractional flow reserve (FFR) is an index of stenosis severity validated for isolated stenoses. This study develops the theoretical basis and experimentally validates equations for predicting FFR of sequential stenoses separately. Methods and Results-For 2 stenoses in series, equations were derived to predict FFR (FFR(pred)) of each stenosis separately (ie, as if the other one were removed) from arterial pressure (P(a)), pressure between the 2 stenoses (P(m)), distal coronary pressure (P(d)), and coronary occlusive pressure (P(w)). In 5 dogs with 2 stenoses of varying severity in the left circumflex coronary artery, FFR(pred) was compared with FFR(app) (ratio of the pressure just distal to that just proximal to each stenoses) and to FFR(true) (ratio of the pressures distal to proximal to each stenosis but after removal of the other one) in case of fixed distal and varying proximal stenoses (n=15) and in case of fixed proximal and varying distal stenoses (n=20). The overestimation of FFR(true) by FFR(app) was larger than that of FFR(true) by FFR(pred) (0.070+/-0.007 versus 0.029+/-0.004, P<0.01 for fixed distal stenoses, and 0.114+/-0.01 versus 0.036+/-0. 004, P<0.01 for fixed proximal stenoses). This overestimation of FFR(true) by FFR(app) was larger for fixed proximal than for fixed distal stenoses. Conclusions-The interaction between 2 stenoses is such that FFR of each lesion separately cannot be calculated by the equation for isolated stenoses (P(d)/P(a) during hyperemia) applied to each separately but can be predicted by more complete equations taking into account P(a), P(m), P(d), and P(w).

摘要

背景——血流储备分数(FFR)是一种已被验证用于孤立性狭窄的狭窄严重程度指标。本研究建立了理论基础,并通过实验验证了分别预测串联狭窄FFR的方程。方法与结果——对于串联的两个狭窄,推导了方程,以便从动脉压(P(a))、两个狭窄之间的压力(P(m))、冠状动脉远端压力(P(d))和冠状动脉闭塞压力(P(w))分别预测每个狭窄的FFR(预测FFR,FFR(pred))(即,就好像另一个狭窄被移除一样)。在5只左回旋支冠状动脉有两个不同严重程度狭窄的犬中,比较了预测FFR(FFR(pred))与应用FFR(FFR(app))(每个狭窄近端压力与远端压力之比)以及与真实FFR(FFR(true))(每个狭窄近端压力与远端压力之比,但在移除另一个狭窄之后),分别针对固定远端狭窄且近端狭窄变化的情况(n = 15)以及固定近端狭窄且远端狭窄变化的情况(n = 20)。应用FFR(app)对FFR(true)的高估大于应用FFR(pred)对FFR(true)的高估(固定远端狭窄时为0.070±0.007对0.029±0.004,P<0.01;固定近端狭窄时为0.114±0.01对0.036±0.004,P<0.01)。应用FFR(app)对FFR(true)的这种高估在固定近端狭窄时比在固定远端狭窄时更大。结论——两个狭窄之间的相互作用使得不能通过分别应用于每个狭窄的孤立狭窄方程(充血时的P(d)/P(a))来计算每个病变的FFR,但可以通过考虑P(a)、P(m)、P(d)和P(w)的更完整方程来预测。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验