Nishino T, Iwasaki H, Kataoka M, Ariyoshi M, Fujita T, Shinagawa H, Morikawa K
Department of Structural Biology, Biomolecular Engineering Research Institute (BERI), 6-2-3 Furuedai, Osaka, Suita, 565-0874, Japan.
J Mol Biol. 2000 May 5;298(3):407-16. doi: 10.1006/jmbi.2000.3675.
In prokaryotes, RuvA-RuvB complexes play a crucial role in the migration of the Holliday junction, which is a key intermediate of homologous recombination. RuvA binds to the Holliday junction and enhances the ATPase activity of RuvB required for branch migration. RuvA adopts a unique domain structure, which assembles into a tetrameric molecule. The previous mutational and proteolytic analyses suggested that mutations in a carboxyl-terminal domain (domain III) impair binding of RuvA to RuvB. In order to clarify the functional role of each domain in vitro, we established the recombinant expression systems, which allow us to analyze structural and biochemical properties of each domain separately. A small-angle X-ray scattering solution study, combined with X-ray crystallographic analyses, was applied to the tetrameric full-length RuvA and its tetrameric NH2 region (domains I and II) lacking the domain III. These results demonstrated that domain III can be completely separate from the tetrameric major core of the NH2 region and freely mobile in solution, through a remarkably flexible loop. Biochemical analyses indicated that domain III not only interacts with RuvB, but also modulates its ATPase activity. This modulation may facilitate the dynamic coupling between RuvA and RuvB during branch migration.
在原核生物中,RuvA-RuvB复合物在霍利迪连接体的迁移中起关键作用,霍利迪连接体是同源重组的关键中间体。RuvA与霍利迪连接体结合,并增强分支迁移所需的RuvB的ATP酶活性。RuvA具有独特的结构域结构,可组装成四聚体分子。先前的突变和蛋白水解分析表明,羧基末端结构域(结构域III)中的突变会损害RuvA与RuvB的结合。为了在体外阐明每个结构域的功能作用,我们建立了重组表达系统,使我们能够分别分析每个结构域的结构和生化特性。将小角X射线散射溶液研究与X射线晶体学分析相结合,应用于缺乏结构域III的四聚体全长RuvA及其四聚体NH2区域(结构域I和II)。这些结果表明,结构域III可以通过一个非常灵活的环与NH2区域的四聚体主要核心完全分离,并在溶液中自由移动。生化分析表明,结构域III不仅与RuvB相互作用,还调节其ATP酶活性。这种调节可能有助于在分支迁移过程中RuvA和RuvB之间的动态偶联。