Lessard E, Yessine M A, Hamelin B A, O'Hara G, LeBlanc J, Turgeon J
Quebec Heart Institute, Laval Hospital, Ste-Foy, Canada.
Pharmacogenetics. 1999 Aug;9(4):435-43.
According to in-vitro studies with microsomes from human livers and from yeast expression systems with high CYP2D6 activity, the major oxidation pathway of venlafaxine is catalysed by CYP2D6. In this study, we investigated the role of the CYP2D6 polymorphism and the effects of low-dose quinidine, a selective inhibitor of, CYP2D6, on the disposition of venlafaxine. Fourteen healthy men, eight with the extensive metabolizer and six with the poor metabolizer phenotype were administered venlafaxine hydrochloride 18.75 mg orally every 12 h for 48 h on two occasions (1 week apart); once alone and once during the concomitant administration of quinidine sulfate 100 mg every 12 h. Blood and urine samples were collected under steady-state conditions over one dosing interval (12 h). When venlafaxine was administered alone, the oral clearance of venlafaxine was more than fourfold less in poor metabolizers compared to extensive metabolizers (P < 0.05). This was mainly due to a decreased capability of poor metabolizers to form O-desmethylated metabolites at the position 4 of the aromatic moiety. In extensive metabolizers, quinidine decreased venlafaxine oral clearance from 100 +/- 62 l/h to 17 +/- 5 l/h (mean +/- SD; P < 0.05) without any effects on renal clearance (4 +/- 1 l/h during venlafaxine alone and 4 +/- 1 l/h during venlafaxine plus quinidine). In these individuals, the sequential metabolism of venlafaxine to O-desmethylvenlafaxine and to N,O-didesmethylvenlafaxine was inhibited by quinidine coadministration so that metabolic clearances to O-desmethylated metabolites decreased from 43 +/- 32 l/h to 2 +/- 1 l/h (P < 0.05). In poor metabolizers, coadministration of quinidine did not cause significant changes in oral clearance and partial metabolic clearances of venlafaxine to its various metabolites. Decreased CYP2D6 activity could also be associated with cardiovascular toxicity as observed in four patients during treatment with the drug. Thus, genetically determined or pharmacologically altered CYP2D6 activity represents a major determinant of venlafaxine disposition in humans.
根据对来自人肝脏的微粒体以及具有高CYP2D6活性的酵母表达系统进行的体外研究,文拉法辛的主要氧化途径由CYP2D6催化。在本研究中,我们调查了CYP2D6基因多态性的作用以及低剂量奎尼丁(一种CYP2D6选择性抑制剂)对文拉法辛处置的影响。14名健康男性,其中8名是快代谢型,6名是慢代谢型,分两次(间隔1周)每隔12小时口服18.75mg盐酸文拉法辛,共48小时;一次单独给药,一次在同时每隔12小时服用100mg硫酸奎尼丁期间给药。在一个给药间隔(12小时)的稳态条件下采集血样和尿样。当单独给予文拉法辛时,慢代谢者的文拉法辛口服清除率比快代谢者低四倍多(P<0.05)。这主要是由于慢代谢者在芳香部分4位形成O-去甲基代谢物的能力下降。在快代谢者中,奎尼丁使文拉法辛口服清除率从100±62l/h降至17±5l/h(平均值±标准差;P<0.05),而对肾清除率无任何影响(单独使用文拉法辛时为4±1l/h,文拉法辛加奎尼丁时为4±1l/h)。在这些个体中,奎尼丁合用抑制了文拉法辛依次代谢为O-去甲基文拉法辛和N,O-二去甲基文拉法辛,因此代谢为O-去甲基代谢物的代谢清除率从43±32l/h降至2±1l/h(P<0.05)。在慢代谢者中,奎尼丁合用对文拉法辛的口服清除率及其各种代谢物的部分代谢清除率未引起显著变化。CYP2D6活性降低也可能与用药期间观察到的4例患者的心血管毒性有关。因此,遗传决定的或经药理学改变的CYP2D6活性是人类中文拉法辛处置的主要决定因素。