The role of synaptophysin in the exocytotic release of dopamine (DA) was examined in Xenopus laevis oocytes injected with rat brain mRNA. 2. The mRNA-injected oocytes showed DA uptake which depended on the incubation time and external DA concentrations. 3. Stimulation with KCl (10-50 mM) of mRNA-injected oocytes preloaded with DA evoked external Ca2+ -dependent release of DA. The noninjected and water-injected oocytes did not produce uptake of DA and stimulation-evoked release of DA. 4. The high-KCl (50 mM)-stimulated release of DA decreased in the oocytes injected with rat brain mRNA together with antibody to synaptophysin. 5. Immunoblot analysis demonstrated that synaptophysin was expressed in the brain mRNA-injected oocytes but not in the noninjected and water-injected oocytes. 6. Thus, uptake and release machinery similar to native dopaminergic nerve terminals was expressed in Xenopus oocytes by injecting mRNA-extracted from the rat brain, and synaptophysin may play a role in the exocytotic release of DA.