在真实疾病状态未知时诊断试验的敏感性、特异性及疾病患病率的估计。

Estimation of sensitivity and specificity of diagnostic tests and disease prevalence when the true disease state is unknown.

作者信息

Enøe C, Georgiadis M P, Johnson W O

机构信息

Department of Animal Science and Animal Health, Division of Ethology and Health, Royal Veterinary and Agricultural University, DK-1870, Frederiksberg C, Denmark.

出版信息

Prev Vet Med. 2000 May 30;45(1-2):61-81. doi: 10.1016/s0167-5877(00)00117-3.

Abstract

The performance of a new diagnostic test is frequently evaluated by comparison to a perfect reference test (i.e. a gold standard). In many instances, however, a reference test is less than perfect. In this paper, we review methods for estimation of the accuracy of a diagnostic test when an imperfect reference test with known classification errors is available. Furthermore, we focus our presentation on available methods of estimation of test characteristics when the sensitivity and specificity of both tests are unknown. We present some of the available statistical methods for estimation of the accuracy of diagnostic tests when a reference test does not exist (including maximum likelihood estimation and Bayesian inference). We illustrate the application of the described methods using data from an evaluation of a nested polymerase chain reaction and microscopic examination of kidney imprints for detection of Nucleospora salmonis in rainbow trout.

摘要

新诊断测试的性能通常通过与完美的参考测试(即金标准)进行比较来评估。然而,在许多情况下,参考测试并不完美。在本文中,我们回顾了在有已知分类错误的不完美参考测试可用时,估计诊断测试准确性的方法。此外,当两种测试的敏感性和特异性均未知时,我们将重点介绍估计测试特征的可用方法。我们介绍了一些在不存在参考测试时估计诊断测试准确性的可用统计方法(包括最大似然估计和贝叶斯推断)。我们使用来自评估巢式聚合酶链反应和肾脏印记显微镜检查以检测虹鳟鱼中鲑核孢子虫的数据来说明所描述方法的应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索