Suppr超能文献

贝叶斯与诊断测试。

Bayes and diagnostic testing.

作者信息

Lesaffre Emmanuel, Speybroeck Niko, Berkvens Dirk

机构信息

Biostatistical Centre, Catholic University of Leuven, Leuven, Belgium.

出版信息

Vet Parasitol. 2007 Aug 19;148(1):58-61. doi: 10.1016/j.vetpar.2007.05.010. Epub 2007 Jun 12.

Abstract

Interpretation of the result of a diagnostic test depends not only on the actual test result(s) but also on information external to this result, namely the test's sensitivity and specificity. This external information (also called prior information) must be combined with the data to yield the so-called updated, posterior estimates of the true prevalence and the test characteristics. The Bayesian approach offers a natural, intuitive framework in which to carry out this estimation process. The influence of the prior information on the final result may not be ignored. Guidance for the choice of prior information not in conflict with the data can be obtained from a set of statistics and indices (DIC, p(D), Bayes-p).

摘要

诊断测试结果的解读不仅取决于实际测试结果,还取决于该结果之外的信息,即测试的灵敏度和特异性。这种外部信息(也称为先验信息)必须与数据相结合,以得出所谓的关于真实患病率和测试特征的更新后验估计值。贝叶斯方法提供了一个自然、直观的框架来进行这一估计过程。先验信息对最终结果的影响不容忽视。可以从一组统计量和指标(DIC、p(D)、贝叶斯p值)中获得与数据不冲突的先验信息选择指导。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验