Hamman M A, Haehner-Daniels B D, Wrighton S A, Rettie A E, Hall S D
Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
Biochem Pharmacol. 2000 Jul 1;60(1):7-17. doi: 10.1016/s0006-2952(00)00301-4.
The stereoselective sulfoxidation of the pharmacologically active metabolite of sulindac, sulindac sulfide, was characterized in human liver, kidney, and cDNA-expressed enzymes. Kinetic parameter estimates (pH = 7.4) for sulindac sulfoxide formation in human liver microsomes (N = 4) for R- and S-sulindac sulfoxide were V(max) = 1.5 +/- 0.50 nmol/min/mg, K(m) = 15 +/- 5.1 microM; and V(max) = 1.1 +/- 0.36 nmol/min/mg, K(m) = 16 +/- 6.1 microM, respectively. Kidney microsomes (N = 3) produced parameter estimates (pH = 7.4) of V(max) = 0.9 +/- 0.29 nmol/min/mg, K(m) = 15 +/- 2.9 microM; V(max) = 0.5 +/- 0.21 nmol/min/mg, K(m) = 22 +/- 1.9 microM for R- and S-sulindac sulfoxide, respectively. In human liver and flavin-containing monooxygenase 3 (FMO3) the V(max) for R-sulindac sulfoxide increased 60-70% at pH = 8.5, but for S-sulindac sulfoxide was unchanged. In fourteen liver microsomal preparations, significant correlations occurred between R-sulindac sulfoxide formation and either immunoquantified FMO or nicotine N-oxidation (r = 0.88 and 0.83; P < 0.01). The R- and S-sulindac sulfoxide formation rate also correlated significantly (r = 0.85 and 0.75; P < 0.01) with immunoquantified FMO in thirteen kidney microsomal samples. Mild heat deactivation of microsomes reduced activity by 30-60%, and a loss in stereoselectivity was observed. Methimazole was a potent and nonstereoselective inhibitor of sulfoxidation in liver and kidney microsomes. n-Octylamine and membrane solubilization with lubrol were potent and selective inhibitors of S-sulindac sulfoxide formation. cDNA-expressed CYPs failed to appreciably sulfoxidate sulindac sulfide, and CYP inhibitors were ineffective in suppressing catalytic activity. Purified mini-pig liver FMO1, rabbit lung FMO2, and human cDNA-expressed FMO3 efficiently oxidized sulindac sulfide with a high degree of stereoselectivity towards the R-isomer, but FMO5 lacked catalytic activity. The biotransformation of the sulfide to the sulfoxide is catalyzed predominately by FMOs and may prove to be useful in characterizing FMO activity.
在人肝脏、肾脏以及经cDNA表达的酶中,对舒林酸的药理活性代谢产物舒林酸硫化物的立体选择性亚砜化作用进行了表征。在人肝微粒体(N = 4)中,R-和S-舒林酸亚砜形成的动力学参数估计值(pH = 7.4)为:R-舒林酸亚砜的V(max)=1.5±0.50 nmol/分钟/毫克,K(m)=15±5.1微摩尔;S-舒林酸亚砜的V(max)=1.1±0.36 nmol/分钟/毫克,K(m)=16±6.1微摩尔。肾脏微粒体(N = 3)产生的参数估计值(pH = 7.4)为:R-舒林酸亚砜的V(max)=0.9±0.29 nmol/分钟/毫克,K(m)=15±2.9微摩尔;S-舒林酸亚砜的V(max)=0.5±0.21 nmol/分钟/毫克,K(m)=22±1.9微摩尔。在人肝脏和含黄素单加氧酶3(FMO3)中,pH = 8.5时R-舒林酸亚砜的V(max)增加60 - 70%,但S-舒林酸亚砜的V(max)不变。在14个肝微粒体制剂中,R-舒林酸亚砜的形成与免疫定量的FMO或尼古丁N-氧化之间存在显著相关性(r = 0.88和0.83;P < 0.01)。在13个肾微粒体样品中,R-和S-舒林酸亚砜的形成速率也与免疫定量的FMO显著相关(r = 0.85和r = 0.75;P < 0.01)。微粒体的温和热失活使活性降低30 - 60%,并观察到立体选择性丧失。甲巯咪唑是肝和肾微粒体中亚砜化作用的强效非立体选择性抑制剂。正辛胺和用月桂醇进行膜增溶是S-舒林酸亚砜形成的强效选择性抑制剂。经cDNA表达的细胞色素P450(CYPs)未能明显使舒林酸硫化物亚砜化,并且CYPs抑制剂在抑制催化活性方面无效。纯化的小型猪肝脏FMO1、兔肺FMO2和人cDNA表达的FMO3能高效氧化舒林酸硫化物,对R-异构体具有高度立体选择性,但FMO5缺乏催化活性。硫化物向亚砜的生物转化主要由FMO催化,可能有助于表征FMO活性。