Suppr超能文献

使用运动学数据确定正常行走过程中事件时间的算法。

Algorithms to determine event timing during normal walking using kinematic data.

作者信息

Hreljac A, Marshall R N

机构信息

Department of Kinesiology and Health Science, California State University, Sacramento, 6000 J Street, Sacramento, CA 95819-6073, USA.

出版信息

J Biomech. 2000 Jun;33(6):783-6. doi: 10.1016/s0021-9290(00)00014-2.

Abstract

Algorithms to predict heelstrike and toeoff times during normal walking using only kinematic data are presented. The accuracy of these methods was compared with the results obtained using synchronized force platform recordings of two subjects walking at a variety of speeds for a total of 12 trials. Using a 60Hz data collection system, the absolute value errors (AVE) in predicting heelstrike averaged 4.7ms, while the AVE in predicting toeoff times averaged 5.6ms. True average errors (negative for an early prediction) were +1.2ms for both heelstrike and toeoff, indicating that no systematic errors occurred. It was concluded that the proposed algorithms provide an easy and reliable method of determining event times during walking when kinematic data are collected, with a considerable improvement in resolution over visual inspection of video records, and could be utilized in conjunction with any 2-D or 3-D kinematic data collection system.

摘要

本文提出了仅使用运动学数据来预测正常行走过程中足跟触地和足趾离地时间的算法。将这些方法的准确性与通过同步测力平台记录两名受试者以各种速度行走共12次试验所获得的结果进行了比较。使用60Hz的数据采集系统,预测足跟触地的绝对误差(AVE)平均为4.7ms,而预测足趾离地时间的AVE平均为5.6ms。足跟触地和足趾离地的真实平均误差(早期预测为负)均为+1.2ms,表明没有发生系统误差。得出的结论是,当收集运动学数据时,所提出的算法提供了一种简单可靠的方法来确定行走过程中的事件时间,与视频记录的目视检查相比,分辨率有了显著提高,并且可以与任何二维或三维运动学数据采集系统结合使用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验