Center for Digital Health & Social Innovation, St. Pölten University of Applied Sciences, St. Pölten, Austria.
Institute of Health Sciences, St. Pölten University of Applied Sciences, St. Pölten, Austria.
PLoS One. 2023 Aug 11;18(8):e0288555. doi: 10.1371/journal.pone.0288555. eCollection 2023.
The correct estimation of gait events is essential for the interpretation and calculation of 3D gait analysis (3DGA) data. Depending on the severity of the underlying pathology and the availability of force plates, gait events can be set either manually by trained clinicians or detected by automated event detection algorithms. The downside of manually estimated events is the tedious and time-intensive work which leads to subjective assessments. For automated event detection algorithms, the drawback is, that there is no standardized method available. Algorithms show varying robustness and accuracy on different pathologies and are often dependent on setup or pathology-specific thresholds. In this paper, we aim at closing this gap by introducing a novel deep learning-based gait event detection algorithm called IntellEvent, which shows to be accurate and robust across multiple pathologies. For this study, we utilized a retrospective clinical 3DGA dataset of 1211 patients with four different pathologies (malrotation deformities of the lower limbs, club foot, infantile cerebral palsy (ICP), and ICP with only drop foot characteristics) and 61 healthy controls. We propose a recurrent neural network architecture based on long-short term memory (LSTM) and trained it with 3D position and velocity information to predict initial contact (IC) and foot off (FO) events. We compared IntellEvent to a state-of-the-art heuristic approach and a machine learning method called DeepEvent. IntellEvent outperforms both methods and detects IC events on average within 5.4 ms and FO events within 11.3 ms with a detection rate of ≥ 99% and ≥ 95%, respectively. Our investigation on generalizability across laboratories suggests that models trained on data from a different laboratory need to be applied with care due to setup variations or differences in capturing frequencies.
步态事件的正确估计对于 3D 步态分析(3DGA)数据的解释和计算至关重要。根据潜在病理的严重程度和力板的可用性,可以由经过培训的临床医生手动设置步态事件,也可以由自动事件检测算法检测。手动估计事件的缺点是繁琐且耗时,导致主观评估。对于自动事件检测算法,缺点是没有可用的标准化方法。算法在不同的病理情况下表现出不同的稳健性和准确性,并且通常依赖于设置或特定于病理的阈值。在本文中,我们旨在通过引入一种称为 IntellEvent 的新型基于深度学习的步态事件检测算法来弥补这一差距,该算法在多种病理情况下表现出准确性和稳健性。在这项研究中,我们利用了一个包含 1211 名患者的回顾性临床 3DGA 数据集,这些患者患有四种不同的疾病(下肢旋转畸形、马蹄足、婴儿脑瘫(ICP)和仅表现出垂足特征的 ICP)和 61 名健康对照者。我们提出了一种基于长短时记忆(LSTM)的递归神经网络架构,并使用 3D 位置和速度信息对其进行训练,以预测初始接触(IC)和足离地(FO)事件。我们将 IntellEvent 与最先进的启发式方法和一种称为 DeepEvent 的机器学习方法进行了比较。IntellEvent 优于这两种方法,平均在 5.4ms 内检测到 IC 事件,在 11.3ms 内检测到 FO 事件,检测率分别≥99%和≥95%。我们对跨实验室可泛化性的研究表明,由于设置变化或捕获频率差异,需要谨慎应用在不同实验室数据上训练的模型。