Burle B, Bonnet M
Centre de Recherche en Neurosciences Cognitives, CNRS and Université de Provence, Marseille, France.
Brain Res Cogn Brain Res. 2000 Jun;9(3):327-37. doi: 10.1016/s0926-6410(00)00013-6.
In order to account for the memory span [G.A. Miller, The magical number seven, plus minus two: some limits on our capacity for processing information, Psychol. Rev. 63 (1956) 81-97.], the magical number seven, plus minus two, and high-speed scanning in human memory ¿S. Sternberg, High speed scanning in human memory, Science 153 (1966) 652-654., Lisman and collaborators [O. Jensen, J.E. Lisman, An oscillatory short-term memory buffer model can account for data on the Sternberg task, J. Neurosci. 18 (1998) 10688-10699; J.E. Lisman, M.A.P. Idiart, Storage of 7+/-2 short-term memories in oscillatory subcycles, Science 267 (1995), 1512-1515.] proposed an oscillatory short-term memory buffer model. In this neurophysiological model: "a single brain network can separately maintain up to seven memories by a multiplexing mechanism that uses theta and gamma brain oscillations for clocking. A memory is represented by groups of neurons that fire in the same gamma cycle" ¿O. Jensen, J.E. Lisman, An oscillatory short-term memory buffer model can account for data on the Sternberg task, J. Neurosci. 18 (1998) 10688-10699, p. 10688. To test this model, we tried to modify the memory scanning time by shifting the gamma oscillation frequency. To this aim, we replicated the visual short-term memory scanning task ¿S. Sternberg, High speed scanning in human memory, Science 153 (1966) 652-654., and we simultaneously used the protocol that Treisman ¿M. Treisman, A. Faulkner, P.L.N. Naish, D. Brogan, The internal clock: evidence for a temporal oscillator underlying time perception with some estimates of its characteristics frequency, Perception 19 (1990) 705-743. designed to drive, slowing down or speeding up, a temporal oscillator acting in the gamma range ¿J.G.R. Jefferys, R.D. Traub, M.A. Whittington, Neuronal networks for induced "40 Hz rhythms, Trends Neurosci. 19 (1996) 202-208; W. MacKay, Synchronized neuronal oscillations and their role in motor processes, Trends Cog. Sci. 1 (1997) 176-183; M. Treisman, N. Cook, P.L.N. Naish, J.K. MacCrone, The internal clock: electroencephalographic evidence for oscillatory processes underlying time perception, Q. J. Exp. Psychol. 47A (1994) 241-289.. In this protocol, an auditory periodic stimulus (click train) was delivered at various frequencies during the task. The reaction time (RT), the slope, and the intercept of the linear function associating RT to memorized list length showed systematic modulations according to the stimulation frequency. The predicted driving effects due to the click trains were obtained, consisting of localised modulations of performance on the stimulation frequency band. We argue that memory scanning is indeed paced by a temporal oscillator, thus providing behavioral arguments for the serial oscillatory model of Lisman.
为了解释记忆广度[G.A. 米勒,《神奇的数字七,加或减二:我们处理信息能力的一些限制》,《心理学评论》63 (1956) 81 - 97。]、神奇的数字七加或减二以及人类记忆中的高速扫描[S. 斯特恩伯格,《人类记忆中的高速扫描》,《科学》153 (1966) 652 - 654。],利兹曼及其合作者[O. 詹森,J.E. 利兹曼,《振荡短期记忆缓冲模型可以解释斯特恩伯格任务的数据》,《神经科学杂志》18 (1998) 10688 - 10699;J.E. 利兹曼,M.A.P. 伊迪亚尔特,《在振荡子周期中存储7 ± 2个短期记忆》,《科学》267 (1995),1512 - 1515。]提出了一种振荡短期记忆缓冲模型。在这个神经生理模型中:“一个单一的脑网络可以通过一种复用机制分别维持多达七个记忆,该机制利用θ和γ脑振荡作为时钟。一个记忆由在同一γ周期内放电的神经元群表示”[O. 詹森,J.E. 利兹曼,《振荡短期记忆缓冲模型可以解释斯特恩伯格任务的数据》,《神经科学杂志》18 (1998) 10688 - 10699,第10688页。]。为了测试这个模型,我们试图通过改变γ振荡频率来改变记忆扫描时间。为此,我们重复了视觉短期记忆扫描任务[S. 斯特恩伯格,《人类记忆中的高速扫描》,《科学》153 (1966) 652 - 654。],并且我们同时使用了特雷斯曼[M. 特雷斯曼,A. 福克纳,P.L.N. 奈什,D. 布罗根,《内部时钟:时间感知背后的时间振荡器的证据及其特征频率的一些估计》,《感知》19 (1990) 705 - 743。]设计的方案来驱动、减慢或加快一个在γ范围内起作用的时间振荡器[J.G.R. 杰弗里斯,R.D. 特劳布,M.A. 惠廷顿,《诱导“40赫兹节律”的神经网络》,《神经科学趋势》19 (1996) 202 - 208;W. 麦凯,《同步神经元振荡及其在运动过程中的作用》,《认知科学趋势》1 (1997) 176 - 183;M. 特雷斯曼,N. 库克,P.L.N. 奈什,J.K. 麦克龙,《内部时钟:时间感知背后振荡过程的脑电图证据》,《实验心理学季刊》47A (1994) 241 - 289。]。在这个方案中,在任务期间以各种频率提供一个听觉周期性刺激(点击序列)。反应时间(RT)、将RT与记忆列表长度相关联的线性函数的斜率和截距根据刺激频率显示出系统的调制。获得了由点击序列引起的预测驱动效应,包括在刺激频带上表现的局部调制。我们认为记忆扫描确实由一个时间振荡器控制节奏,从而为利兹曼的串行振荡模型提供了行为学依据。