Jacobsen R B, Koch E D, Lange-Malecki B, Stocker M, Verhey J, Van Wagoner R M, Vyazovkina A, Olivera B M, Terlau H
Departments of Biology and Medicinal Chemistry, University of Utah, Salt Lake City, Utah, 84112, USA.
J Biol Chem. 2000 Aug 11;275(32):24639-44. doi: 10.1074/jbc.C900990199.
kappa-Conotoxin PVIIA (kappa-PVIIA), a 27-amino acid peptide with three disulfide cross-links, isolated from the venom of Conus purpurascens, is the first conopeptide shown to inhibit the Shaker K(+) channel (Terlau, H., Shon, K., Grilley, M., Stocker, M., Stühmer, W., and Olivera, B. M. (1996) Nature 381, 148-151). Recently, two groups independently determined the solution structure for kappa-PVIIA using NMR; although the structures reported were similar, two mutually exclusive models for the interaction of the peptide with the Shaker channel were proposed. We carried out a structure/function analysis of kappa-PVIIA, with alanine substitutions for all amino acids postulated to be key residues by both groups. Our data are consistent with the critical dyad model developed by Ménez and co-workers (Dauplais, M., Lecoq, A., Song, J. , Cotton, J., Jamin, N., Gilquin, B., Roumestand, C., Vita, C., de Medeiros, C., Rowan, E. G., Harvey, A. L., and Ménez, A. (1997) J. Biol. Chem. 272, 4802-4809) for polypeptide antagonists of K(+) channels. In the case of kappa-PVIIA, Lys(7) and Phe(9) are essential for activity as predicted by Savarin et al. (Savarin, P., Guenneugues, M., Gilquin, B., Lamthanh, H., Gasparini, S., Zinn-Justin, S., and Ménez, A. (1998) Biochemistry 37, 5407-5416); these workers also correctly predicted an important role for Lys(25). Thus, although kappa-conotoxin PVIIA has no obvious sequence homology to polypeptide toxins from other venomous animals that interact with voltage-gated K(+) channels, there may be convergent functional features in diverse K(+) channel polypeptide antagonists.
κ-芋螺毒素PVIIA(κ-PVIIA)是一种由27个氨基酸组成的肽,含有三个二硫键交联,从紫色芋螺的毒液中分离得到,是首个被证明能抑制Shaker钾通道的芋螺肽(特拉劳,H.,肖恩,K.,格里利,M.,斯托克,M.,施图默,W.,以及奥利韦拉,B. M.(1996年)《自然》381卷,第148 - 151页)。最近,两个研究小组分别利用核磁共振确定了κ-PVIIA的溶液结构;尽管所报道的结构相似,但对于该肽与Shaker通道相互作用提出了两种相互排斥的模型。我们对κ-PVIIA进行了结构/功能分析,将两个研究小组都假定为关键残基的所有氨基酸用丙氨酸进行替换。我们的数据与梅内斯及其同事提出的关键二元组模型(道普莱,M.,勒科克,A.,宋,J.,科顿,J.,贾曼,N.,吉尔坎,B.,鲁梅斯坦德,C.,维塔,C.,德梅代罗斯,C.,罗恩,E. G.,哈维,A. L.,以及梅内斯,A.(1997年)《生物化学杂志》272卷,第4802 - 4809页)一致,该模型适用于钾通道的多肽拮抗剂。就κ-PVIIA而言,如萨瓦兰等人所预测(萨瓦兰,P.,盖内格斯,M.,吉尔坎,B.,拉姆坦,H.,加斯帕里尼,S.,津 - 贾斯汀,S.,以及梅内斯,A.(1998年)《生物化学》37卷,第5407 - 5416页),赖氨酸(7)和苯丙氨酸(9)对活性至关重要;这些研究人员还正确预测了赖氨酸(25)的重要作用。因此,尽管κ-芋螺毒素PVIIA与其他与电压门控钾通道相互作用的有毒动物的多肽毒素没有明显的序列同源性,但在不同的钾通道多肽拮抗剂中可能存在趋同的功能特征。