Suppr超能文献

利用毒液肽探索离子通道结构和功能。

Use of venom peptides to probe ion channel structure and function.

机构信息

Atheris Laboratories, CH-1233 Bernex-Geneva, Switzerland.

出版信息

J Biol Chem. 2010 Apr 30;285(18):13315-20. doi: 10.1074/jbc.R109.076596. Epub 2010 Feb 26.

Abstract

Venoms of snakes, scorpions, spiders, insects, sea anemones, and cone snails are complex mixtures of mostly peptides and small proteins that have evolved for prey capture and/or defense. These deadly animals have long fascinated scientists and the public. Early studies isolated lethal components in the search for cures and understanding of their mechanisms of action. Ion channels have emerged as targets for many venom peptides, providing researchers highly selective and potent molecular probes that have proved invaluable in unraveling ion channel structure and function. This minireview highlights molecular details of their toxin-receptor interactions and opportunities for development of peptide therapeutics.

摘要

蛇、蝎子、蜘蛛、昆虫、海葵和芋螺的毒液是由大多数肽和小蛋白组成的复杂混合物,这些混合物是为了捕食和/或防御而进化的。这些致命的动物长期以来一直吸引着科学家和公众的注意。早期的研究分离出了致命成分,以寻找治疗方法并了解其作用机制。离子通道已成为许多毒液肽的靶点,为研究人员提供了高度选择性和有效的分子探针,这些探针在揭示离子通道结构和功能方面证明是非常有价值的。这篇迷你评论强调了它们的毒素-受体相互作用的分子细节,以及开发肽类治疗药物的机会。

相似文献

1
Use of venom peptides to probe ion channel structure and function.
J Biol Chem. 2010 Apr 30;285(18):13315-20. doi: 10.1074/jbc.R109.076596. Epub 2010 Feb 26.
2
Simulation Studies and Dynamic Interaction of Venom Peptides with Ion Channels.
Protein Pept Lett. 2018;25(7):652-662. doi: 10.2174/0929866525666180619095245.
3
The deep-rooted origin of disulfide-rich spider venom toxins.
Elife. 2023 Feb 9;12:e83761. doi: 10.7554/eLife.83761.
4
Computational Studies of Venom Peptides Targeting Potassium Channels.
Toxins (Basel). 2015 Dec 1;7(12):5194-211. doi: 10.3390/toxins7124877.
5
Venom-derived peptide inhibitors of voltage-gated potassium channels.
Neuropharmacology. 2017 Dec;127:124-138. doi: 10.1016/j.neuropharm.2017.07.002. Epub 2017 Jul 5.
6
Molecular Simulations of Disulfide-Rich Venom Peptides with Ion Channels and Membranes.
Molecules. 2017 Feb 27;22(3):362. doi: 10.3390/molecules22030362.
7
Organic toxins as tools to understand ion channel mechanisms and structure.
Curr Top Med Chem. 2015;15(7):581-603. doi: 10.2174/1568026615666150217110710.
8
Sodium Channels and Venom Peptide Pharmacology.
Adv Pharmacol. 2017;79:67-116. doi: 10.1016/bs.apha.2017.01.004. Epub 2017 Apr 8.
9
Acid-sensing ion channel (ASIC) structure and function: Insights from spider, snake and sea anemone venoms.
Neuropharmacology. 2017 Dec;127:173-184. doi: 10.1016/j.neuropharm.2017.04.042. Epub 2017 Apr 27.
10
The pharmacology of voltage-gated sodium channel activators.
Neuropharmacology. 2017 Dec;127:87-108. doi: 10.1016/j.neuropharm.2017.04.014. Epub 2017 Apr 14.

引用本文的文献

4
Web of venom: exploration of big data resources in animal toxin research.
Gigascience. 2024 Jan 2;13. doi: 10.1093/gigascience/giae054.
5
Neurotoxin-Derived Optical Probes for Biological and Medical Imaging.
Mol Imaging Biol. 2023 Oct;25(5):799-814. doi: 10.1007/s11307-023-01838-1. Epub 2023 Jul 19.
7
ScrepYard: An online resource for disulfide-stabilized tandem repeat peptides.
Protein Sci. 2023 Feb;32(2):e4566. doi: 10.1002/pro.4566.
8
Simulation and Machine Learning Methods for Ion-Channel Structure Determination, Mechanistic Studies and Drug Design.
Front Pharmacol. 2022 Jun 28;13:939555. doi: 10.3389/fphar.2022.939555. eCollection 2022.
9
Charge substitutions at the voltage-sensing module of domain III enhance actions of site-3 and site-4 toxins on an insect sodium channel.
Insect Biochem Mol Biol. 2021 Oct;137:103625. doi: 10.1016/j.ibmb.2021.103625. Epub 2021 Aug 3.
10
N-Terminal Tagging with GFP Enhances Selectivity of Agitoxin 2 to Kv1.3-Channel Binding Site.
Toxins (Basel). 2020 Dec 16;12(12):802. doi: 10.3390/toxins12120802.

本文引用的文献

1
ArachnoServer: a database of protein toxins from spiders.
BMC Genomics. 2009 Aug 13;10:375. doi: 10.1186/1471-2164-10-375.
3
Psalmotoxin-1 docking to human acid-sensing ion channel-1.
J Biol Chem. 2009 Jun 26;284(26):17625-33. doi: 10.1074/jbc.M109.003913. Epub 2009 Apr 24.
5
Engineering a stable and selective peptide blocker of the Kv1.3 channel in T lymphocytes.
Mol Pharmacol. 2009 Apr;75(4):762-73. doi: 10.1124/mol.108.052704. Epub 2009 Jan 2.
6
Peptide toxins that selectively target insect Na(V) and Ca(V) channels.
Channels (Austin). 2008 Mar-Apr;2(2):100-16. doi: 10.4161/chan.2.2.6022. Epub 2008 Mar 9.
7
ProTx-II, a selective inhibitor of NaV1.7 sodium channels, blocks action potential propagation in nociceptors.
Mol Pharmacol. 2008 Nov;74(5):1476-84. doi: 10.1124/mol.108.047670. Epub 2008 Aug 26.
8
muO conotoxins inhibit NaV channels by interfering with their voltage sensors in domain-2.
Channels (Austin). 2007 Jul-Aug;1(4):253-62. doi: 10.4161/chan.4847. Epub 2007 Aug 7.
10
Neuronally micro-conotoxins from Conus striatus utilize an alpha-helical motif to target mammalian sodium channels.
J Biol Chem. 2008 Aug 1;283(31):21621-8. doi: 10.1074/jbc.M802852200. Epub 2008 Jun 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验