Suppr超能文献

鸡松果体褪黑素合成:光和环磷酸腺苷调控血清素N-乙酰基转移酶蛋白的丰度。

Chick pineal melatonin synthesis: light and cyclic AMP control abundance of serotonin N-acetyltransferase protein.

作者信息

Zatz M, Gastel J A, Heath J R, Klein D C

机构信息

Section on Biochemical Pharmacology, Laboratory of Cellular and Molecular Regulation, National Institute of Mental Health, Bethesda, MD 20892-4068, USA.

出版信息

J Neurochem. 2000 Jun;74(6):2315-21. doi: 10.1046/j.1471-4159.2000.0742315.x.

Abstract

Melatonin production in the pineal gland is high at night and low during the day. This rhythm reflects circadian changes in the activity of serotonin N-acetyltransferase [arylalkylamine N-acetyltransferase (AA-NAT); EC 2.3.1.87], the penultimate enzyme in melatonin synthesis. The rhythm is generated by an endogenous circadian clock. In the chick, a clock is located in the pinealocyte, which also contains two phototransduction systems. One controls melatonin production by adjusting the clock and the other acts distal to the clock, via cyclic AMP mechanisms, to switch melatonin synthesis on and off. Unlike the clock in these cells, cyclic AMP does not appear to regulate activity by altering AA-NAT mRNA levels. The major changes in AA-NAT mRNA levels induced by the clock seemed likely (but not certain) to generate comparable changes in AA-NAT protein levels and AA-NAT activity. Cyclic AMP might also regulate AA-NAT activity via changes in protein levels, or it might act via other mechanisms, including posttranslational changes affecting activity. We measured AA-NAT protein levels and enzyme activity in cultured chick pineal cells and found that they correlated well under all conditions. They rose and fell spontaneously with a circadian rhythm. They also rose in response to agents that increase cyclic AMP. They were raised by agents that increase cyclic AMP, such as forskolin, and lowered by agents that decrease cyclic AMP, such as light and norepinephrine. Thus, both the clock and cyclic AMP can control AA-NAT activity by altering the total amount of AA-NAT protein. Effects of proteosomal proteolysis inhibitors suggest that changes in AA-NAT protein levels, in turn, reflect changes in the rate at which the protein is destroyed by proteosomal proteolysis. It is likely that cyclic AMP-induced changes in AA-NAT protein levels mediate rapid changes in chick pineal AA-NAT activity. Our results indicate that light can rapidly regulate the abundance of a specific protein (AA-NAT) within a photoreceptive cell.

摘要

松果体中褪黑素的分泌在夜间旺盛而在白天稀少。这种节律反映了血清素N - 乙酰基转移酶[芳基烷基胺N - 乙酰基转移酶(AA - NAT);EC 2.3.1.87]活性的昼夜变化,它是褪黑素合成过程中的倒数第二个酶。这种节律是由内源性生物钟产生的。在鸡中,生物钟位于松果体细胞内,该细胞还包含两个光转导系统。一个通过调节生物钟来控制褪黑素的分泌,另一个则通过环磷酸腺苷机制在生物钟下游起作用,以开启和关闭褪黑素的合成。与这些细胞中的生物钟不同,环磷酸腺苷似乎不是通过改变AA - NAT mRNA水平来调节活性。生物钟诱导的AA - NAT mRNA水平的主要变化似乎可能(但不确定)会在AA - NAT蛋白水平和AA - NAT活性上产生类似的变化。环磷酸腺苷也可能通过蛋白质水平的变化来调节AA - NAT活性,或者它可能通过其他机制起作用,包括影响活性的翻译后变化。我们测量了培养的鸡松果体细胞中AA - NAT蛋白水平和酶活性,发现在所有条件下它们都具有良好的相关性。它们随昼夜节律自发地升高和降低。它们也会因增加环磷酸腺苷的试剂而升高。它们会被增加环磷酸腺苷的试剂(如福斯可林)升高,而被降低环磷酸腺苷的试剂(如光和去甲肾上腺素)降低。因此,生物钟和环磷酸腺苷都可以通过改变AA - NAT蛋白的总量来控制AA - NAT活性。蛋白酶体蛋白水解抑制剂的作用表明,AA - NAT蛋白水平的变化反过来反映了该蛋白被蛋白酶体蛋白水解破坏的速率变化。环磷酸腺苷诱导AA - NAT蛋白水平的变化很可能介导了鸡松果体中AA - NAT活性的快速变化。我们的结果表明,光可以快速调节感光细胞内特定蛋白质(AA - NAT)的丰度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验