Suppr超能文献

Thiol-reactive metal compounds inhibit NF-kappa B activation by blocking I kappa B kinase.

作者信息

Jeon K I, Jeong J Y, Jue D M

机构信息

Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul, South Korea.

出版信息

J Immunol. 2000 Jun 1;164(11):5981-9. doi: 10.4049/jimmunol.164.11.5981.

Abstract

Gold compounds are used in the treatment of rheumatoid arthritis. NF-kappa B is a transcription factor implicated in the expression of many inflammatory genes. NF-kappa B is activated by signal-induced phosphorylation and subsequent degradation of inhibitory I kappa B (inhibitory protein that dissociates from NF-kappa B) proteins, and a multisubunit I kappa B kinase (IKK) has been identified previously. We tested the effect of various gold compounds on the activation of NF-kappa B and IKK in LPS-stimulated RAW 264.7 mouse macrophages. A lipophilic gold compound, auranofin, suppressed the LPS-induced increase of nuclear kappa B-binding activity, degradation of I kappa B proteins, and IKK activation. Auranofin also blocked IKK activation induced by TNF and PMA/ionomycin, suggesting that the target of auranofin action is common among these diverse signal pathways. In vitro IKK activity was suppressed by addition of hydrophilic gold compounds, such as aurothiomalate, aurothioglucose, and AuCl3. Other thiol-reactive metal ions such as zinc and copper also inhibited IKK activity in vitro, and induction of IKK in LPS-stimulated macrophages. In vitro IKK activity required the presence of reducing agent and was blocked by addition of thiol group-reactive agents. Two catalytic subunits of IKK complex, IKK alpha and IKK beta, were both inhibited by these thiol-modifying agents, suggesting the presence of a cysteine sulfhydryl group in these subunits, which is critical for enzyme activity. The antiinflammatory activity of gold compounds in the treatment of rheumatoid arthritis may depend on modification of this thiol group by gold.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验