Arcuri F, Sestini S, Ricci C, Runci Y, Carducci A, Paulesu L, Cintorino M
Institute of Pathological Anatomy, University of Siena, Italy.
J Steroid Biochem Mol Biol. 2000 Apr;72(5):239-47. doi: 10.1016/s0960-0760(00)00039-x.
This study examined the enzymatic characteristics and steroid regulation of the glucocorticoid-metabolizing enzyme 11beta-hydroxysteroid dehydrogenase (11beta-HSD) in the human breast cancer cell line T-47D. In cell homogenates, exogenous NAD significantly increased the conversion of corticosterone to 11-dehydrocorticosterone, while NADP was ineffective. There was no conversion of 11-dehydrocorticosterone to corticosterone either with NADH or NADPH demonstrating the lack of reductase activity. In keeping with these results, RT-PCR analysis indicated a mRNA for 11beta-HSD2 in T-47D cells, while 11beta-HSD1 mRNA levels were undetectable. In T-47D cells treated for 24 h with medroxyprogesterone acetate (MPA), 11beta-HSD catalytic activity was elevated 11-fold, while estrone (E(1)), estradiol (E(2)) and the synthetic glucocorticoid dexamethasone (DEX) were ineffective. The antiprogestin mifepristone (RU486) acted as a pure antagonist of the progestin-enhanced 11beta-HSD activity, but did not exert any agonistic effects of its own. In addition, RT-PCR analysis demonstrated that MPA was a potent inducer of 11beta-HSD2 gene expression, increasing the steady-state levels of 11beta-HSD2 mRNA. Taken together, these results demonstrate that 11beta-HSD2 is the 11beta-HSD isoform expressed by T-47D cells under steady-state conditions and suggest the existence of a previously undocumented mechanism of action of progestins in breast cancer cells.