Suppr超能文献

电子供体和溶液化学对腐败希瓦氏菌异化还原锝产物的影响

Effect of electron donor and solution chemistry on products of dissimilatory reduction of technetium by Shewanella putrefaciens.

作者信息

Wildung R E, Gorby Y A, Krupka K M, Hess N J, Li S W, Plymale A E, McKinley J P, Fredrickson J K

机构信息

Pacific Northwest National Laboratory, Richland, Washington 99352, USA.

出版信息

Appl Environ Microbiol. 2000 Jun;66(6):2451-60. doi: 10.1128/AEM.66.6.2451-2460.2000.

Abstract

To help provide a fundamental basis for use of microbial dissimilatory reduction processes in separating or immobilizing (99)Tc in waste or groundwaters, the effects of electron donor and the presence of the bicarbonate ion on the rate and extent of pertechnetate ion [Tc(VII)O(4)(-)] enzymatic reduction by the subsurface metal-reducing bacterium Shewanella putrefaciens CN32 were determined, and the forms of aqueous and solid-phase reduction products were evaluated through a combination of high-resolution transmission electron microscopy, X-ray absorption spectroscopy, and thermodynamic calculations. When H(2) served as the electron donor, dissolved Tc(VII) was rapidly reduced to amorphous Tc(IV) hydrous oxide, which was largely associated with the cell in unbuffered 0. 85% NaCl and with extracellular particulates (0.2 to 0.001 microm) in bicarbonate buffer. Cell-associated Tc was present principally in the periplasm and outside the outer membrane. The reduction rate was much lower when lactate was the electron donor, with extracellular Tc(IV) hydrous oxide the dominant solid-phase reduction product, but in bicarbonate systems much less Tc(IV) was associated directly with the cell and solid-phase Tc(IV) carbonate may have been present. In the presence of carbonate, soluble (<0.001 microm) electronegative, Tc(IV) carbonate complexes were also formed that exceeded Tc(VII)O(4)(-) in electrophoretic mobility. Thermodynamic calculations indicate that the dominant reduced Tc species identified in the experiments would be stable over a range of E(h) and pH conditions typical of natural waters. Thus, carbonate complexes may represent an important pathway for Tc transport in anaerobic subsurface environments, where it has generally been assumed that Tc mobility is controlled by low-solubility Tc(IV) hydrous oxide and adsorptive, aqueous Tc(IV) hydrolysis products.

摘要

为了帮助为利用微生物异化还原过程在废物或地下水中分离或固定(99)Tc提供基本依据,测定了电子供体和碳酸氢根离子的存在对地下金属还原细菌腐败希瓦氏菌CN32对高锝酸根离子[Tc(VII)O(4)(-)]的酶促还原速率和程度的影响,并通过高分辨率透射电子显微镜、X射线吸收光谱和热力学计算相结合的方法评估了水相和固相还原产物的形态。当H(2)作为电子供体时,溶解的Tc(VII)迅速还原为无定形的Tc(IV)水合氧化物,在未缓冲的0.85% NaCl中,它主要与细胞结合,而在碳酸氢盐缓冲液中,则与细胞外颗粒(0.2至0.001微米)结合。与细胞相关的Tc主要存在于周质和外膜之外。当乳酸作为电子供体时,还原速率要低得多,细胞外的Tc(IV)水合氧化物是主要的固相还原产物,但在碳酸氢盐体系中,直接与细胞结合的Tc(IV)要少得多,可能存在固相的Tc(IV)碳酸盐。在有碳酸盐存在的情况下,还形成了可溶性(<0.001微米)的带负电的Tc(IV)碳酸盐络合物,其电泳迁移率超过了Tc(VII)O(4)(-)。热力学计算表明,实验中鉴定出的主要还原态Tc物种在天然水典型的一系列E(h)和pH条件下是稳定的。因此,碳酸盐络合物可能代表了厌氧地下环境中Tc迁移的一条重要途径,而在这种环境中,一般认为Tc的迁移受低溶解度的Tc(IV)水合氧化物和吸附性的水相Tc(IV)水解产物控制。

相似文献

1
2
Technetium reduction in sediments of a shallow aquifer exhibiting dissimilatory iron reduction potential.
FEMS Microbiol Ecol. 2004 Jul 1;49(1):151-62. doi: 10.1016/j.femsec.2003.08.016.
4
Purification and characterization of the [NiFe]-hydrogenase of Shewanella oneidensis MR-1.
Appl Environ Microbiol. 2011 Aug 15;77(16):5584-90. doi: 10.1128/AEM.00260-11. Epub 2011 Jul 1.
5
Reduction and removal of heptavalent technetium from solution by Escherichia coli.
J Bacteriol. 1997 Mar;179(6):2014-21. doi: 10.1128/jb.179.6.2014-2021.1997.
6
Role of nitrate in conditioning aquifer sediments for technetium bioreduction.
Environ Sci Technol. 2010 Jan 1;44(1):150-5. doi: 10.1021/es9010866.
7
Bioreduction of hydrogen uranyl phosphate: mechanisms and U(IV) products.
Environ Sci Technol. 2013 Jun 4;47(11):5668-78. doi: 10.1021/es305258p. Epub 2013 May 21.
8
Hydrogenase- and outer membrane c-type cytochrome-facilitated reduction of technetium(VII) by Shewanella oneidensis MR-1.
Environ Microbiol. 2008 Jan;10(1):125-36. doi: 10.1111/j.1462-2920.2007.01438.x. Epub 2007 Sep 18.
9
Direct and Fe(II)-mediated reduction of technetium by Fe(III)-reducing bacteria.
Appl Environ Microbiol. 2000 Sep;66(9):3743-9. doi: 10.1128/AEM.66.9.3743-3749.2000.
10
Influence of electron donor/acceptor concentrations on hydrous ferric oxide (HFO) bioreduction.
Biodegradation. 2003 Apr;14(2):91-103. doi: 10.1023/a:1024001207574.

引用本文的文献

1
Insights into the Biosynthesis of Nanoparticles by the Genus .
Appl Environ Microbiol. 2021 Oct 28;87(22):e0139021. doi: 10.1128/AEM.01390-21. Epub 2021 Sep 8.
2
Extremophilic Microorganisms for the Treatment of Toxic Pollutants in the Environment.
Molecules. 2020 Oct 23;25(21):4916. doi: 10.3390/molecules25214916.
3
Selective metal removal from chromium-containing synthetic effluents using Shewanella xiamenensis biofilm supported on zeolite.
Environ Sci Pollut Res Int. 2020 Apr;27(10):10495-10505. doi: 10.1007/s11356-020-07690-y. Epub 2020 Jan 15.
4
Phenotypic Characterisation of Shewanella oneidensis MR-1 Exposed to X-Radiation.
PLoS One. 2015 Jun 22;10(6):e0131249. doi: 10.1371/journal.pone.0131249. eCollection 2015.
5
Effects of the anaerobic respiration of Shewanella oneidensis MR-1 on the stability of extracellular U(VI) nanofibers.
Microbes Environ. 2013;28(3):312-5. doi: 10.1264/jsme2.me12149. Epub 2013 May 29.
6
Bioremediation: a genuine technology to remediate radionuclides from the environment.
Microb Biotechnol. 2013 Jul;6(4):349-60. doi: 10.1111/1751-7915.12059. Epub 2013 Apr 26.
7
Purification and characterization of the [NiFe]-hydrogenase of Shewanella oneidensis MR-1.
Appl Environ Microbiol. 2011 Aug 15;77(16):5584-90. doi: 10.1128/AEM.00260-11. Epub 2011 Jul 1.
8
Aerobic removal of technetium by a marine Halomonas strain.
Appl Environ Microbiol. 2006 Dec;72(12):7922-4. doi: 10.1128/AEM.00819-06. Epub 2006 Oct 20.
9
Reduction of technetium(VII) by Desulfovibrio fructosovorans is mediated by the nickel-iron hydrogenase.
Appl Environ Microbiol. 2001 Oct;67(10):4583-7. doi: 10.1128/AEM.67.10.4583-4587.2001.
10
Reduction of Fe(III), Cr(VI), U(VI), and Tc(VII) by Deinococcus radiodurans R1.
Appl Environ Microbiol. 2000 May;66(5):2006-11. doi: 10.1128/AEM.66.5.2006-2011.2000.

本文引用的文献

1
A Novel PhosphorImager-Based Technique for Monitoring the Microbial Reduction of Technetium.
Appl Environ Microbiol. 1996 Feb;62(2):578-82. doi: 10.1128/aem.62.2.578-582.1996.
2
A Hydrogen-Oxidizing, Fe(III)-Reducing Microorganism from the Great Bay Estuary, New Hampshire.
Appl Environ Microbiol. 1992 Oct;58(10):3211-6. doi: 10.1128/aem.58.10.3211-3216.1992.
3
Dissolution and reduction of magnetite by bacteria.
Environ Sci Technol. 1995 Oct;29(10):2535-40. doi: 10.1021/es00010a012.
4
Reduction of technetium by Desulfovibrio desulfuricans: biocatalyst characterization and use in a flowthrough bioreactor.
Appl Environ Microbiol. 1999 Jun;65(6):2691-6. doi: 10.1128/AEM.65.6.2691-2696.1999.
5
High-order multiple-scattering calculations of x-ray-absorption fine structure.
Phys Rev Lett. 1992 Dec 7;69(23):3397-3400. doi: 10.1103/PhysRevLett.69.3397.
6
Multiple-scattering calculations of x-ray-absorption spectra.
Phys Rev B Condens Matter. 1995 Jul 15;52(4):2995-3009. doi: 10.1103/physrevb.52.2995.
8
9
Environmental processes mediated by iron-reducing bacteria.
Curr Opin Biotechnol. 1996 Jun;7(3):287-94. doi: 10.1016/s0958-1669(96)80032-2.
10
Reduction of uranium by cytochrome c3 of Desulfovibrio vulgaris.
Appl Environ Microbiol. 1993 Nov;59(11):3572-6. doi: 10.1128/aem.59.11.3572-3576.1993.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验