Suppr超能文献

对属. 合成纳米粒子的深入了解。

Insights into the Biosynthesis of Nanoparticles by the Genus .

机构信息

Academy of Biology and Biotechnology, Southern Federal Universitygrid.182798.d, Rostov-on-Don, Russia.

Department of Environmental Geosciences, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria.

出版信息

Appl Environ Microbiol. 2021 Oct 28;87(22):e0139021. doi: 10.1128/AEM.01390-21. Epub 2021 Sep 8.

Abstract

The exploitation of microorganisms for the fabrication of nanoparticles (NPs) has garnered considerable research interest globally. The microbiological transformation of metals and metal salts into respective NPs can be achieved under environmentally benign conditions, offering a more sustainable alternative to chemical synthesis methods. Species of the metal-reducing bacterial genus are able to couple the oxidation of various electron donors, including lactate, pyruvate, and hydrogen, to the reduction of a wide range of metal species, resulting in biomineralization of a multitude of metal NPs. Single-metal-based NPs as well as composite materials with properties equivalent or even superior to physically and chemically produced NPs have been synthesized by a number of species. A mechanistic understanding of electron transfer-mediated bioreduction of metals into respective NPs by is crucial in maximizing NP yields and directing the synthesis to produce fine-tuned NPs with tailored properties. In addition, thorough investigations into the influence of process parameters controlling the biosynthesis is another focal point for optimizing the process of NP generation. Synthesis of metal-based NPs using species offers a low-cost, eco-friendly alternative to current physiochemical methods. This article aims to shed light on the contribution of as a model organism in the biosynthesis of a variety of NPs and critically reviews the current state of knowledge on factors controlling their synthesis, characterization, potential applications in different sectors, and future prospects.

摘要

利用微生物制造纳米粒子(NPs)在全球范围内引起了相当大的研究兴趣。在环境友好的条件下,可以实现微生物将金属和金属盐转化为相应的 NPs,为化学合成方法提供了更可持续的替代方案。能够将各种电子供体(包括乳酸盐、丙酮酸和氢气)的氧化与广泛的金属物种的还原偶联的属的金属还原细菌物种,导致多种金属 NPs 的生物矿化。通过多种 物种已经合成了单金属基 NPs 以及具有与物理和化学方法生产的 NPs 相当或甚至更好性能的复合材料。了解 通过 进行的金属电子转移介导的生物还原对于最大化 NP 产率和指导合成以生产具有定制性能的精细调整的 NPs 至关重要。此外,深入研究控制生物合成的工艺参数的影响是优化 NP 生成过程的另一个重点。使用 物种合成金属基 NPs 提供了一种低成本、环保的替代当前物理化学方法的方法。本文旨在阐明 作为生物合成各种 NPs 的模型生物的贡献,并批判性地回顾控制其合成的因素、表征、在不同领域的潜在应用以及未来前景的现有知识。

相似文献

1
Insights into the Biosynthesis of Nanoparticles by the Genus .
Appl Environ Microbiol. 2021 Oct 28;87(22):e0139021. doi: 10.1128/AEM.01390-21. Epub 2021 Sep 8.
2
5
Biofabrication of discrete spherical gold nanoparticles using the metal-reducing bacterium Shewanella oneidensis.
Acta Biomater. 2011 May;7(5):2148-52. doi: 10.1016/j.actbio.2011.01.023. Epub 2011 Jan 15.
6
Revisiting the mechanistic pathways for bacterial mediated synthesis of noble metal nanoparticles.
J Microbiol Methods. 2019 Apr;159:18-25. doi: 10.1016/j.mimet.2019.02.010. Epub 2019 Feb 20.
7
Biosynthesis of Nanomaterials by Species for Application in Lithium Ion Batteries.
Front Microbiol. 2018 Nov 21;9:2817. doi: 10.3389/fmicb.2018.02817. eCollection 2018.

引用本文的文献

2
Hydrogenase Mediated Biosynthesis of Catalytically Active Cu Nanoparticles.
Small. 2025 Sep;21(35):e2500210. doi: 10.1002/smll.202500210. Epub 2025 Jul 14.
4
Green Synthesis of Vanadium Dioxide Nanoparticles by sp. Strain HN-41.
J Microbiol Biotechnol. 2025 May 26;35:e2502051. doi: 10.4014/jmb.2502.02051.
5
Isolation and characterization of a novel highly efficient bacterium QD4 for quantum dot biosynthesis.
Front Microbiol. 2025 Jan 29;16:1521632. doi: 10.3389/fmicb.2025.1521632. eCollection 2025.
6
Biological and Chemical Processes of Nitrate Reduction and Ferrous Oxidation Mediated by MR-1.
Microorganisms. 2024 Nov 29;12(12):2454. doi: 10.3390/microorganisms12122454.
8
Nanotechnology in the Restoration of Polluted Soil.
Nanomaterials (Basel). 2022 Feb 24;12(5):769. doi: 10.3390/nano12050769.

本文引用的文献

2
Biotechnological synthesis of Pd/Ag and Pd/Au nanoparticles for enhanced Suzuki-Miyaura cross-coupling activity.
Microb Biotechnol. 2021 Nov;14(6):2435-2447. doi: 10.1111/1751-7915.13762. Epub 2021 Mar 15.
3
Nanotechnology Potential in Seed Priming for Sustainable Agriculture.
Nanomaterials (Basel). 2021 Jan 20;11(2):267. doi: 10.3390/nano11020267.
4
Insights into palladium nanoparticles produced by Shewanella oneidensis MR-1: Roles of NADH dehydrogenases and hydrogenases.
Environ Res. 2020 Dec;191:110196. doi: 10.1016/j.envres.2020.110196. Epub 2020 Sep 10.
5
DyMnFeO nanoparticles decorated over mesoporous silica for environmental remediation applications.
J Hazard Mater. 2021 Jan 15;402:123526. doi: 10.1016/j.jhazmat.2020.123526. Epub 2020 Jul 21.
7
Green Synthesis of Metallic Nanoparticles and Their Prospective Biotechnological Applications: an Overview.
Biol Trace Elem Res. 2021 Jan;199(1):344-370. doi: 10.1007/s12011-020-02138-3. Epub 2020 May 6.
8
9
The Crystal Structure of a Biological Insulated Transmembrane Molecular Wire.
Cell. 2020 Apr 30;181(3):665-673.e10. doi: 10.1016/j.cell.2020.03.032. Epub 2020 Apr 13.
10
Shewanella oneidensis MR-1 self-assembled Pd-cells-rGO conductive composite for enhancing electrocatalysis.
Environ Res. 2020 May;184:109317. doi: 10.1016/j.envres.2020.109317. Epub 2020 Feb 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验