Academy of Biology and Biotechnology, Southern Federal Universitygrid.182798.d, Rostov-on-Don, Russia.
Department of Environmental Geosciences, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria.
Appl Environ Microbiol. 2021 Oct 28;87(22):e0139021. doi: 10.1128/AEM.01390-21. Epub 2021 Sep 8.
The exploitation of microorganisms for the fabrication of nanoparticles (NPs) has garnered considerable research interest globally. The microbiological transformation of metals and metal salts into respective NPs can be achieved under environmentally benign conditions, offering a more sustainable alternative to chemical synthesis methods. Species of the metal-reducing bacterial genus are able to couple the oxidation of various electron donors, including lactate, pyruvate, and hydrogen, to the reduction of a wide range of metal species, resulting in biomineralization of a multitude of metal NPs. Single-metal-based NPs as well as composite materials with properties equivalent or even superior to physically and chemically produced NPs have been synthesized by a number of species. A mechanistic understanding of electron transfer-mediated bioreduction of metals into respective NPs by is crucial in maximizing NP yields and directing the synthesis to produce fine-tuned NPs with tailored properties. In addition, thorough investigations into the influence of process parameters controlling the biosynthesis is another focal point for optimizing the process of NP generation. Synthesis of metal-based NPs using species offers a low-cost, eco-friendly alternative to current physiochemical methods. This article aims to shed light on the contribution of as a model organism in the biosynthesis of a variety of NPs and critically reviews the current state of knowledge on factors controlling their synthesis, characterization, potential applications in different sectors, and future prospects.
利用微生物制造纳米粒子(NPs)在全球范围内引起了相当大的研究兴趣。在环境友好的条件下,可以实现微生物将金属和金属盐转化为相应的 NPs,为化学合成方法提供了更可持续的替代方案。能够将各种电子供体(包括乳酸盐、丙酮酸和氢气)的氧化与广泛的金属物种的还原偶联的属的金属还原细菌物种,导致多种金属 NPs 的生物矿化。通过多种 物种已经合成了单金属基 NPs 以及具有与物理和化学方法生产的 NPs 相当或甚至更好性能的复合材料。了解 通过 进行的金属电子转移介导的生物还原对于最大化 NP 产率和指导合成以生产具有定制性能的精细调整的 NPs 至关重要。此外,深入研究控制生物合成的工艺参数的影响是优化 NP 生成过程的另一个重点。使用 物种合成金属基 NPs 提供了一种低成本、环保的替代当前物理化学方法的方法。本文旨在阐明 作为生物合成各种 NPs 的模型生物的贡献,并批判性地回顾控制其合成的因素、表征、在不同领域的潜在应用以及未来前景的现有知识。