Suppr超能文献

非小细胞肺癌:FDG PET用于I期疾病患者的淋巴结分期。

Non-small cell lung cancer: FDG PET for nodal staging in patients with stage I disease.

作者信息

Farrell M A, McAdams H P, Herndon J E, Patz E F

机构信息

Department of Radiology, Duke University Medical Center, Durham, NC 27710, USA.

出版信息

Radiology. 2000 Jun;215(3):886-90. doi: 10.1148/radiology.215.3.r00jn29886.

Abstract

PURPOSE

To determine the accuracy of 2-[fluorine-18]fluoro-2-deoxy-D-glucose (FDG) positron emission tomography (PET) in the evaluation of regional lymph nodes in patients with stage I non-small cell lung cancer (NSCLC).

MATERIALS AND METHODS

Imaging and clinical findings obtained during 5 years in 84 patients (mean age, 66 years) were reviewed. Patients had thoracic computed tomographic findings of stage I NSCLC, an FDG PET study, and histopathologic proof of lung cancer. At the time of diagnosis, disease stage was assigned on the basis of FDG PET results and was compared with the histopathologic stage to determine the accuracy of PET.

RESULTS

When PET stage was compared with histopathologic stage, the disease in 72 (86%) patients was accurately staged with PET, understaged in two (2%), and overstaged in 10 (12%). The overall sensitivity, specificity, and positive and negative predictive values for PET of regional lymph nodal metastases were 82%, 86%, 47%, and 97%, respectively.

CONCLUSION

FDG PET enables accurate staging of regional lymph node disease in patients with stage I NSCLC. A negative PET scan in these patients suggests that mediastinoscopy is unnecessary and that these patients can proceed directly to thoracotomy.

摘要

目的

确定2-[氟-18]氟-2-脱氧-D-葡萄糖(FDG)正电子发射断层扫描(PET)在评估I期非小细胞肺癌(NSCLC)患者区域淋巴结方面的准确性。

材料与方法

回顾了84例患者(平均年龄66岁)5年间获得的影像学和临床资料。患者有I期NSCLC的胸部计算机断层扫描结果、FDG PET检查以及肺癌的组织病理学证据。诊断时,根据FDG PET结果确定疾病分期,并与组织病理学分期进行比较,以确定PET的准确性。

结果

将PET分期与组织病理学分期进行比较时,72例(86%)患者的疾病通过PET准确分期,2例(2%)分期过低,10例(12%)分期过高。PET对区域淋巴结转移的总体敏感性、特异性、阳性预测值和阴性预测值分别为82%、86%、47%和97%。

结论

FDG PET能够准确对I期NSCLC患者的区域淋巴结疾病进行分期。这些患者PET扫描阴性表明无需进行纵隔镜检查,可直接进行开胸手术。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验