Suppr超能文献

Closed-loop control of muscle length through motor unit recruitment in load-moving conditions.

作者信息

Zhou B H, Baratta R V, Solomonow M, Zhu M, Lu Y

机构信息

Bioengineering Laboratory, Department of Orthopaedic Surgery, Louisiana State University Medical Center, 2025 Gravier Street, Suite 400, 70112, New Orleans, LA, USA.

出版信息

J Biomech. 2000 Jul;33(7):827-35. doi: 10.1016/s0021-9290(00)00033-6.

Abstract

Neuroprostheses aimed at restoring lost movement in the limbs of spinal cord injured individuals are being developed in this laboratory. As part of this program, we have designed a digital proportional-integral-derivative controller integrated with a stimulation system which effects recruitment of motor units according to the size principle. This system is intended to control muscle length while shortening against fixed loads. Feline sciatic nerves were exposed and stimulated with ramp, triangular, sinusoidal, staircase and random signals as test inputs. Changes in muscle length and effective time delay under different conditions were measured and analyzed. Differences of tracking quality between open- and closed-loop conditions were examined through analysis of variance as well as the differences between small (250g) and large (1kg) loads. The results showed that parameters used to compare muscle length output to the input signals were dramatically improved in the closed-loop trials as compared to the open-loop condition. Mean squared correlation coefficients between input and output signals for ramp signals increased by 0.019, and for triangular signals by 0.12. Mean peak cross correlation between input and output signals for sinusoidal waveforms increased by 0.06, with decreases in time to peak cross correlation (effective time delay) from 195 to 38ms. In slow random signals (power up to 0.5Hz), peak cross correlation went from 0.74 to 0.89, and time-to-peak cross correlation decreased from 205 to 55ms. In fast random signals (power up to 1Hz), peak cross correlation went from 0.82 to 0.89, and time-to-peak cross correlation from 200 to 65ms. For staircase signals, both rise times and mean steady-state errors decreased. It was found that, once the length range was set, the load weight had no effect on tracking performance. Analysis of mean square error demonstrated that for all signals tested, the feedback decreased the tracking error significantly, whereas, again, load had no effect. The results suggest that tracking is vastly improved by using a closed-loop system to control muscle length, and that load does not affect the quality of signal tracking as measured by standard control system analysis methods.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验