Bergsman J B, Tsien R W
Neurosciences Program, and Department of Molecular and Cellular Physiology, Beckman Center, Stanford University School of Medicine, Stanford, California 94305, USA.
J Neurosci. 2000 Jun 15;20(12):4368-78. doi: 10.1523/JNEUROSCI.20-12-04368.2000.
When the presynaptic membrane protein syntaxin is coexpressed in Xenopus oocytes with N- or P/Q-type Ca(2+) channels, it promotes their inactivation (Bezprozvanny et al., 1995; Wiser et al., 1996, 1999; Degtiar et al., 2000) (I. B. Bezprozvanny, P. Zhong, R. H. Scheller, and R. W. Tsien, unpublished observations). These findings led to the hypothesis that syntaxin influences Ca(2+) channel function in presynaptic endings, in a reversal of the conventional flow of information from Ca(2+) channels to the release machinery. We examined this effect in isolated mammalian nerve terminals (synaptosomes). Botulinum neurotoxin type C1 (BoNtC1), which cleaves syntaxin, was applied to rat neocortical synaptosomes at concentrations that completely blocked neurotransmitter release. This treatment altered the pattern of Ca(2+) entry monitored with fura-2. Whereas the initial Ca(2+) rise induced by depolarization with K(+)-rich solution was unchanged, late Ca(2+) entry was strongly augmented by syntaxin cleavage. Similar results were obtained when Ca(2+) influx arose from repetitive firing induced by the K(+)-channel blocker 4-aminopyridine. Cleavage of vesicle-associated membrane protein with BoNtD or SNAP-25 with BoNtE failed to produce a significant change in Ca(2+) entry. The BoNtC1-induced alteration in Ca(2+) signaling was specific to voltage-gated Ca(2+) channels, not Ca(2+) extrusion or buffering, and it involved N-, P/Q- and R-type channels, the high voltage-activated channels most intimately associated with presynaptic release machinery. The modulatory effect of syntaxin was not immediately manifest when synaptosomes had been K(+)-predepolarized in the absence of external Ca(2+), but developed with a delay after admission of Ca(2+), suggesting that vesicular turnover may be necessary to make syntaxin available for its stabilizing effect on Ca(2+) channel inactivation.
当突触前膜蛋白 syntaxin 与 N 型或 P/Q 型 Ca(2+)通道在非洲爪蟾卵母细胞中共表达时,它会促进这些通道的失活(Bezprozvanny 等人,1995 年;Wiser 等人,1996 年、1999 年;Degtiar 等人,2000 年)(I. B. Bezprozvanny、P. Zhong、R. H. Scheller 和 R. W. Tsien,未发表的观察结果)。这些发现引发了一个假说,即 syntaxin 会影响突触前末梢中 Ca(2+)通道的功能,这与从 Ca(2+)通道到释放机制的传统信息流方向相反。我们在分离的哺乳动物神经末梢(突触体)中研究了这种效应。将可切割 syntaxin 的 C1 型肉毒杆菌神经毒素(BoNtC1)以完全阻断神经递质释放的浓度应用于大鼠新皮质突触体。这种处理改变了用 fura-2 监测的 Ca(2+)内流模式。虽然用富含 K(+)的溶液去极化诱导的初始 Ca(2+)升高没有变化,但 syntaxin 切割后晚期 Ca(2+)内流显著增加。当 Ca(2+)内流由 K(+)通道阻滞剂 4-氨基吡啶诱导的重复放电引起时,也得到了类似的结果。用 BoNtD 切割囊泡相关膜蛋白或用 BoNtE 切割 SNAP-25 未能使 Ca(2+)内流产生显著变化。BoNtC1 诱导的 Ca(2+)信号变化特异于电压门控 Ca(2+)通道,而非 Ca(2+)的外排或缓冲,并且它涉及 N 型、P/Q 型和 R 型通道,这些是与突触前释放机制最密切相关的高电压激活通道。当突触体在无细胞外 Ca(2+)的情况下预先用 K(+)去极化时,syntaxin 的调节作用并未立即显现,但在加入 Ca(+)后会延迟出现,这表明囊泡周转可能是使 syntaxin 发挥其对 Ca(2+)通道失活的稳定作用所必需的。