Suppr超能文献

生物超分子电子转移的展望。

A perspective of biological supramolecular electron transfer.

作者信息

Ramasarma T

机构信息

Department of Biochemistry, Indian Institute of Science, Bangalore.

出版信息

Indian J Biochem Biophys. 1999 Dec;36(6):379-97.

Abstract

Electron transfer is an essential activity in biological systems. The migrating electron originates from water-oxygen in photosynthesis and reverts to dioxygen in respiration. In this cycle two metal porphyrin complexes possessing circular conjugated system and macrocyclic pi-clouds, chlorophyll and heme, play a decisive role in mobilising electrons for travel over biological structures as extraneous electrons. Transport of electrons within proteins (as in cytochromes) and within DNA (during oxidative damage and repair) is known to occur. Initial evaluations did not favour formation of semiconducting pathways of delocalized electrons of the peptide bonds in proteins and of the bases in nucleic acids. Direct measurement of conductivity of bulk material and quantum chemical calculations of their polymeric structures also did not support electron transfer in both proteins and nucleic acids. New experimental approaches have revived interest in the process of charge transfer through DNA duplex. The fluorescence on photo-excitation of Ru-complex was found to be quenched by Rh-complex, when both were tethered to DNA and intercalated in the base stack. Similar experiments showed that damage to G-bases and repair of T-T dimers in DNA can occur by possible long range electron transfer through the base stack. The novelty of this phenomenon prompted the apt name, "chemistry at a distance". Based on experiments with ruthenium modified proteins, intramolecular electron transfer in proteins is now proposed to use pathways that include C-C sigma-bonds and surprisingly hydrogen bonds which remained out of favour for a long time. In support of this, some experimental evidence is now available showing that hydrogen bond-bridges facilitate transfer of electrons between metal-porphyrin complexes. By molecular orbital calculations over 20 years ago we found that "delocalization of an extraneous electron is pronounced when it enters low-lying virtual orbitals of the electronic structures of peptide units linked by hydrogen bonds". This review focuses on supramolecular electron transfer pathways that can emerge on interlinking by hydrogen bonds and metal coordination of some unnoticed structures with pi-clouds in proteins and nucleic acids, potentially useful in catalysis and energy missions.

摘要

电子转移是生物系统中的一项基本活动。迁移的电子起源于光合作用中的水 - 氧,并在呼吸作用中还原为双氧。在这个循环中,两种具有环状共轭体系和大环π云的金属卟啉配合物,即叶绿素和血红素,在将电子作为外来电子动员起来在生物结构上移动方面起着决定性作用。已知电子在蛋白质内部(如细胞色素中)和DNA内部(在氧化损伤和修复过程中)会发生转移。最初的评估并不支持在蛋白质中的肽键和核酸中的碱基形成离域电子的半导体通路。对块状材料电导率的直接测量以及对其聚合物结构的量子化学计算也不支持蛋白质和核酸中的电子转移。新的实验方法重新唤起了人们对通过DNA双链进行电荷转移过程的兴趣。当Ru配合物和Rh配合物都连接到DNA并插入碱基堆积中时,发现Ru配合物光激发后的荧光会被Rh配合物猝灭。类似的实验表明,DNA中G碱基的损伤和T - T二聚体的修复可能通过碱基堆积进行长程电子转移而发生。这种现象的新颖性促使人们赋予了它一个贴切的名字——“远距离化学”。基于对钌修饰蛋白质的实验,现在提出蛋白质中的分子内电子转移使用包括C - C σ键以及令人惊讶的氢键的通路,而氢键在很长一段时间内都不被看好。支持这一点的是,现在有一些实验证据表明氢键桥促进了金属卟啉配合物之间的电子转移。二十多年前通过分子轨道计算我们发现,“当一个外来电子进入由氢键连接的肽单元电子结构的低能虚轨道时,离域现象很明显”。本综述重点关注通过氢键和金属配位将蛋白质和核酸中一些未被注意的具有π云的结构相互连接时可能出现的超分子电子转移途径,这些途径在催化和能量任务中可能有用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验