Suppr超能文献

Role of the tertiary and quaternary structures in the stability of dimeric copper, zinc superoxide dismutases.

作者信息

Stroppolo M E, Malvezzi-Campeggi F, Mei G, Rosato N, Desideri A

机构信息

INFM and Department of Biology, University of Rome Tor Vergata, Italy.

出版信息

Arch Biochem Biophys. 2000 May 15;377(2):215-8. doi: 10.1006/abbi.2000.1780.

Abstract

The equilibrium unfolding process of human Cu,Zn superoxide dismutase has been quantitatively monitored through circular dichroism and fluorescence spectroscopy as a function of increasing guanidinium hydrochloride concentration. The process occurs through the formation of a monomeric intermediate species following a three-state transition equilibrium. Comparison with the stability of the prokaryotic Cu,Zn SOD from P. leiognathi shows that the eukaryotic enzyme is more stable than the prokaryotic enzyme by approximately 3 kcal/mol. This difference is due to the monomer-to-unfolded equilibrium, while the dimer-to-monomer equilibrium is comparable for the two enzymes despite their different intersubunit interactions. These results are confirmed by the unfolding of the copper-depleted derivatives. The Cu,Zn superoxide dismutase represents a good example of how evolution has found two independent quaternary assemblies maintaining the same dimer stability.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验