Rhodius V A, Busby S J
School of Biosciences, The University of Birmingham, Birmingham, B15 2TT, UK.
J Mol Biol. 2000 Jun 2;299(2):311-24. doi: 10.1006/jmbi.2000.3737.
The Escherichia coli cyclic AMP receptor protein, CRP, induces transcription at Class II CRP-dependent promoters by making three different activatory contacts with different surfaces of holo RNA polymerase. One contact surface of CRP, known as Activating Region 3 (AR3), is functional in the downstream subunit of the CRP dimer and is predicted to interact with region 4 of the RNAP sigma(70) subunit. We have previously shown that a mutant CRP derivative that activates transcription primarily via AR3, CRP HL159 KE101 KN52, requires the positively charged residues K593, K597 and R599 in sigma(70) for activation. Here, we have used the positive control substitution, EK58, to disrupt AR3-dependent activation by CRP HL159 KE101 KN52. We then screened random mutant libraries and an alanine scan library of sigma(70) for candidates that restore activation by CRP HL159 KE101 KN52 EK58. We found that changes at R596 and R599 in sigma(70) can restore activation by CRP HL159 KE101 KN52 EK58. This suggests that the side-chains of both R596 and R599 in sigma(70) clash with K58 in CRP. Maximal activation by CRP HL159 KE101 KN52 EK58 is achieved with the substitutions RE596 or RD596 in sigma(70). We propose that there are specific charge-charge interactions between E596 or D596 in sigma(70) and K58 in AR3. Thus, no increase in activation is observed in the presence of another positive control substitution, EG58 (CRP HL159 KE101 KN52 EG58). Similarly, both sigma(70) RE596 and sigma(70) RD596 can restore activation by CRP EK58 but not CRP EG58, and they both decrease activation by wild-type CRP. We suggest that E596 and D596 in sigma(70) can positively interact with K58 in AR3, thereby enhancing activation, but negatively interact with E58, thereby decreasing activation. The substitution, KA52 in AR3 increases Class II CRP-dependent activation by removing an inhibitory lysine residue. However, this increase is not observed in the presence of either sigma(70) RE596 or sigma(70) RD596. We conclude that the inhibitory side-chain, K52 in AR3, clashes with R596 in sigma(70). Finally, we show that the sigma(70) RE596 and RD596 substitutions affect CRP-dependent activation from Class II, but not Class I, promoters.
大肠杆菌环磷酸腺苷受体蛋白(CRP)通过与全酶RNA聚合酶的不同表面进行三种不同的激活接触,在II类CRP依赖性启动子处诱导转录。CRP的一个接触表面,称为激活区域3(AR3),在CRP二聚体的下游亚基中起作用,并预计与RNAP σ70亚基的区域4相互作用。我们之前已经表明,一种主要通过AR3激活转录的突变CRP衍生物CRP HL159 KE101 KN52,在σ70中激活需要带正电荷的残基K593、K597和R599。在这里,我们使用阳性对照替代物EK58来破坏CRP HL159 KE101 KN52的AR3依赖性激活。然后,我们筛选了随机突变文库和σ70的丙氨酸扫描文库,以寻找能够恢复CRP HL159 KE101 KN52 EK58激活的候选物。我们发现,σ70中R596和R599的变化可以恢复CRP HL159 KE101 KN52 EK58的激活。这表明,σ70中R596和R599的侧链与CRP中的K58发生冲突。用σ70中的替代物RE596或RD596可实现CRP HL159 KE101 KN52 EK58的最大激活。我们提出,σ70中的E596或D596与AR3中的K58之间存在特定的电荷 - 电荷相互作用。因此,在存在另一个阳性对照替代物EG58(CRP HL159 KE101 KN52 EG58)的情况下,未观察到激活增加。同样,σ70 RE596和σ70 RD596都可以恢复CRP EK58的激活,但不能恢复CRP EG58的激活,并且它们都降低了野生型CRP的激活。我们认为,σ70中的E596和D596可以与AR3中的K58发生正向相互作用,从而增强激活,但与E58发生负向相互作用,从而降低激活。AR3中的替代物KA52通过去除一个抑制性赖氨酸残基增加了II类CRP依赖性激活。然而,在存在σ70 RE596或σ70 RD596的情况下未观察到这种增加。我们得出结论,AR3中的抑制性侧链K52与σ70中的R596发生冲突。最后,我们表明,σ70 RE596和RD596替代物影响II类而非I类启动子的CRP依赖性激活。