Suppr超能文献

穹窿体内WD40重复结构域的RNA定位与建模

RNA location and modeling of a WD40 repeat domain within the vault.

作者信息

Kong L B, Siva A C, Kickhoefer V A, Rome L H, Stewart P L

机构信息

Department of Molecular and Medical Pharmacology, Crump Institute for Biological Imaging, University of California at Los Angeles School of Medicine, 90095-1770, USA.

出版信息

RNA. 2000 Jun;6(6):890-900. doi: 10.1017/s1355838200000157.

Abstract

The vault complex is a ubiquitous 13-MDa ribonucleoprotein assembly, composed of three proteins (TEP1, 240 kDa; VPARP, 193 kDa; and MVP, 100 kDa) that are highly conserved in eukaryotes and an untranslated RNA (vRNA). The vault has been shown to affect multidrug resistance in cancer cells, and one particular component, MVP, is thought to play a role in the transport of drug from the nucleus. To locate the position of the vRNA, vaults were treated with RNases, and cryo-electron microscopy (cryo-EM) was performed on the resulting complexes. Using single-particle reconstruction techniques, 3,476 particle images were combined to generate a 22-A-resolution structure. Difference mapping between the RNase-treated vault and the previously calculated intact vault reconstructions reveals the vRNA to be at the ends of the vault caps. In this position, the vRNA may interact with both the interior and exterior environments of the vault. The finding of a 16-fold density ring at the top of the cap has allowed modeling of the WD40 repeat domain of the vault TEP1 protein within the cryo-EM vault density. Both stoichiometric considerations and the finding of higher resolution for the computationally selected and refined "barrel only" images indicate a possible symmetry mismatch between the barrel and the caps. The molecular architecture of the complex is emerging, with 96 copies of MVP composing the eightfold symmetric barrel, and the vRNA together with one copy of TEP1 and four predicted copies of VPARP comprising each cap.

摘要

穹窿体复合物是一种普遍存在的13兆道尔顿核糖核蛋白组装体,由三种在真核生物中高度保守的蛋白质(TEP1,240千道尔顿;VPARP,193千道尔顿;MVP,100千道尔顿)和一种非翻译RNA(vRNA)组成。已证明穹窿体可影响癌细胞的多药耐药性,其中一个特定成分MVP被认为在药物从细胞核的转运中起作用。为了确定vRNA的位置,用核糖核酸酶处理穹窿体,并对所得复合物进行冷冻电子显微镜(cryo-EM)分析。使用单颗粒重建技术,将3476个颗粒图像合并以生成分辨率为22埃的结构。核糖核酸酶处理后的穹窿体与先前计算的完整穹窿体重建之间的差异图谱显示,vRNA位于穹窿体帽的末端。在这个位置,vRNA可能与穹窿体的内部和外部环境相互作用。在帽顶部发现的16倍密度环使得能够在冷冻电子显微镜穹窿体密度内对穹窿体TEP1蛋白的WD40重复结构域进行建模。化学计量学考虑以及对计算选择和细化的“仅桶状”图像更高分辨率的发现均表明桶状结构和帽之间可能存在对称性不匹配。该复合物的分子结构正在显现,96个MVP拷贝组成八重对称的桶状结构,vRNA与一个TEP1拷贝以及四个预测的VPARP拷贝共同构成每个帽。

相似文献

1
RNA location and modeling of a WD40 repeat domain within the vault.
RNA. 2000 Jun;6(6):890-900. doi: 10.1017/s1355838200000157.
3
A vault ribonucleoprotein particle exhibiting 39-fold dihedral symmetry.
Acta Crystallogr D Biol Crystallogr. 2008 May;64(Pt 5):525-31. doi: 10.1107/S0907444908004277. Epub 2008 Apr 19.
6
Structural domains of vault proteins: a role for the coiled coil domain in vault assembly.
Biochem Biophys Res Commun. 2002 Mar 1;291(3):535-41. doi: 10.1006/bbrc.2002.6472.
7
Structure of the vault, a ubiquitous celular component.
Structure. 1999 Apr 15;7(4):371-9. doi: 10.1016/s0969-2126(99)80050-1.
8
Vaults and the major vault protein: novel roles in signal pathway regulation and immunity.
Cell Mol Life Sci. 2009 Jan;66(1):43-61. doi: 10.1007/s00018-008-8364-z.
9
Cellular functions of vaults and their involvement in multidrug resistance.
Curr Drug Targets. 2006 Aug;7(8):923-34. doi: 10.2174/138945006778019345.
10
The formation of vault-tubes: a dynamic interaction between vaults and vault PARP.
J Cell Sci. 2003 Nov 1;116(Pt 21):4391-400. doi: 10.1242/jcs.00749. Epub 2003 Sep 16.

引用本文的文献

1
Crystal structure and mutagenesis of a nucleic acid-binding BRCT domain in human PARP4.
J Biol Chem. 2025 Jun;301(6):110277. doi: 10.1016/j.jbc.2025.110277. Epub 2025 May 22.
2
A guide to the biogenesis and functions of endogenous small non-coding RNAs in animals.
Nat Rev Mol Cell Biol. 2025 May;26(5):347-370. doi: 10.1038/s41580-024-00818-9. Epub 2025 Jan 24.
3
Major Vault Protein/Lung Resistance-Related Protein: A Novel Biomarker for Inflammation and Acute Infections.
Microorganisms. 2024 Aug 25;12(9):1762. doi: 10.3390/microorganisms12091762.
4
Structure, Dynamics and Functional Implications of the Eukaryotic Vault Complex.
Subcell Biochem. 2024;104:531-548. doi: 10.1007/978-3-031-58843-3_20.
6
Structural and biochemical analysis of the PARP1-homology region of PARP4/vault PARP.
Nucleic Acids Res. 2023 Dec 11;51(22):12492-12507. doi: 10.1093/nar/gkad1064.
7
Vault RNAs (vtRNAs): Rediscovered non-coding RNAs with diverse physiological and pathological activities.
Genes Dis. 2023 Mar 23;11(2):772-787. doi: 10.1016/j.gendis.2023.01.014. eCollection 2024 Mar.
9
RNA packaging into extracellular vesicles: An orchestra of RNA-binding proteins?
J Extracell Vesicles. 2020 Dec;10(2):e12043. doi: 10.1002/jev2.12043. Epub 2020 Dec 28.
10
Vault RNAs: hidden gems in RNA and protein regulation.
Cell Mol Life Sci. 2021 Feb;78(4):1487-1499. doi: 10.1007/s00018-020-03675-9. Epub 2020 Oct 15.

本文引用的文献

2
Vaults and telomerase share a common subunit, TEP1.
J Biol Chem. 1999 Nov 12;274(46):32712-7. doi: 10.1074/jbc.274.46.32712.
3
Multidrug resistance and the lung resistance-related protein in human colon carcinoma SW-620 cells.
J Natl Cancer Inst. 1999 Oct 6;91(19):1647-53. doi: 10.1093/jnci/91.19.1647.
4
The 193-kD vault protein, VPARP, is a novel poly(ADP-ribose) polymerase.
J Cell Biol. 1999 Sep 6;146(5):917-28. doi: 10.1083/jcb.146.5.917.
5
Structure of adenovirus complexed with its internalization receptor, alphavbeta5 integrin.
J Virol. 1999 Aug;73(8):6759-68. doi: 10.1128/JVI.73.8.6759-6768.1999.
7
Structure of the vault, a ubiquitous celular component.
Structure. 1999 Apr 15;7(4):371-9. doi: 10.1016/s0969-2126(99)80050-1.
10
Atomic structure of clathrin: a beta propeller terminal domain joins an alpha zigzag linker.
Cell. 1998 Nov 13;95(4):563-73. doi: 10.1016/s0092-8674(00)81623-2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验