Hayashi F, Fukuda Y
Department of Physiology II, School of Medicine, Chiba University, Japan.
Jpn J Physiol. 2000 Feb;50(1):15-24. doi: 10.2170/jjphysiol.50.15.
The activation of peripheral chemoreceptors by hypoxia or electrical stimulation of the carotid sinus nerve elicited a hypoxic respiratory response consisting of both stimulatory and subsequent or simultaneous inhibitory components (hypoxic respiratory stimulation and depression). Both components have different time domains of responses (time-dependent response), providing an integrated respiratory response to hypoxia. This review has focused on the neuroanatomical and neurophysiological correlations responsible for these responses and their neuropharmacological mechanisms. Hypoxic respiratory depression is characterized by the initial activation of respiration followed by a progressive and gradual decline in ventilation during prolonged and/or severe hypoxic exposure (biphasic response). The responsible mechanisms for the depression are located within the central nervous system and may be dependent upon activity from peripheral chemoreceptor. Two underlying mechanisms contributing to the depression have been advocated. (1) Change in synaptic transmission: Within the neuronal network controlling the hypoxic respiratory response, hypoxia might induce the enhancement of inhibitory neurotransmission (modulation), disfacilitation of excitatory neruotransmission or both. (2) Change in the membrane property of respiratory neurons: Hypoxia might suppress the membrane excitability of respiratory neurons composing the hypoxic respiratory response via modulating ion channels, leading to hyperpolarization or depolarization blocking of the neurons. However, the quantitative aspects of Pao(2) (degree and duration of hypoxic exposure) to induce these changes and the susceptibility of both mechanisms to the Pao(2) level have not yet been clearly elucidated.
低氧或颈动脉窦神经的电刺激对外周化学感受器的激活引发了一种低氧呼吸反应,该反应由刺激成分以及随后或同时出现的抑制成分组成(低氧呼吸刺激和抑制)。这两种成分具有不同的反应时域(时间依赖性反应),从而提供了对低氧的综合呼吸反应。本综述聚焦于负责这些反应的神经解剖学和神经生理学关联及其神经药理学机制。低氧呼吸抑制的特征是在长时间和/或严重低氧暴露期间,呼吸先被激活,随后通气逐渐下降(双相反应)。这种抑制的相关机制位于中枢神经系统内,可能依赖于外周化学感受器的活动。有两种导致抑制的潜在机制被提出。(1)突触传递的改变:在控制低氧呼吸反应的神经网络内,低氧可能诱导抑制性神经传递增强(调制)、兴奋性神经传递去易化或两者兼而有之。(2)呼吸神经元膜特性的改变:低氧可能通过调节离子通道抑制构成低氧呼吸反应的呼吸神经元的膜兴奋性,导致神经元超极化或去极化阻滞。然而,诱导这些变化的动脉血氧分压(Pao₂)的定量方面(低氧暴露的程度和持续时间)以及这两种机制对Pao₂水平的敏感性尚未得到明确阐明。