Cubo J
Laboratoire d'Anatomie Comparée, Equipe "Formations Squelettiques", Université Paris VI. CNRS UMR 8570, Case 7077, 2, Pl. Jussieu, Paris Cedex 05, 75251, France.
J Theor Biol. 2000 Aug 7;205(3):343-53. doi: 10.1006/jtbi.2000.2054.
Heterochrony, evolutionary changes in developmental rates and timing, is a key concept in the construction of a synthesis of development and evolution. Heterochronic changes in vertebrate evolution have traditionally been identified through plesiomorphic-apomorphic comparisons of bone growth. This methodological framework assumes that observed heterochronies are the outcome of dissociations of developmental processes in time. Recent findings of non-heterochronic developmental changes underlying morphological heterochrony invalidate this assumption. In this paper, a function for bone growth (at the organ level) has been mathematically deduced from the underlying developmental mechanisms. The temporal domain of the model spans from the time at maximum growth rate, after the formation of growth plates, to the time at atrophy of the proliferating stratum of cells. Three organizational levels were considered: (a) cell kinetics of endochondral ossification, (b) variation of bone growth rates and (c) variation of accumulated bone growth with increasing age. This quantitative model provides an excellent tool to deal with the problem of the developmental basis of morphological change. I have modelled potential evolutionary changes on the system at different levels of biological organization. This new framework involves an epistemological shift in heterochronic analysis from a pattern-oriented inductive way to a process-oriented deductive way. The analysis of the relationships between the evolutionary alterations of endochondral ossification and the morphological expression of these changes reveals that observed pattern heterochronies can be the outcome of different process heterochronies. Moreover, I discuss at length the heteroposic hypothesis, that evolutionary changes in the tight regulation of the amount of protein synthesized by a cell population during development would underlie acceleration or deceleration in cases of evolutionary changes in the initial number of proliferating cells at growth plates. Future research on the genetic basis of process heterochronies and heteroposies will complete our understanding of these evolutionary phenomena.
异时性,即发育速率和时间安排上的进化变化,是构建发育与进化综合理论的关键概念。传统上,脊椎动物进化中的异时性变化是通过对骨骼生长的祖征 - 衍征比较来识别的。这种方法框架假定观察到的异时性是发育过程在时间上解离的结果。最近关于形态异时性背后非异时性发育变化的发现使这一假设无效。在本文中,从潜在的发育机制出发,通过数学推导得出了骨骼生长(在器官水平)的一个函数。该模型的时间范围从生长板形成后最大生长速率的时间点,到增殖细胞层萎缩的时间点。考虑了三个组织层次:(a) 软骨内成骨的细胞动力学,(b) 骨骼生长速率的变化,以及 (c) 随着年龄增长累积骨骼生长的变化。这个定量模型为处理形态变化的发育基础问题提供了一个极好的工具。我在生物组织的不同层次上对该系统的潜在进化变化进行了建模。这个新框架涉及异时性分析在认识论上的转变,从以模式为导向的归纳方式转变为以过程为导向的演绎方式。对软骨内成骨的进化改变与这些变化的形态学表达之间关系的分析表明,观察到的模式异时性可能是不同过程异时性的结果。此外,我详细讨论了异位假说,即在发育过程中细胞群体合成蛋白质数量的严格调控发生进化变化,这将是生长板处增殖细胞初始数量发生进化变化时加速或减速的基础。未来关于过程异时性和异位性遗传基础的研究将完善我们对这些进化现象的理解。